содержание .. 30 31 32 33 34 35 36 37 38 39 40 ..
Химический состав и качество муки
Химический состав муки зависит от состава исходного зерна и сорта муки. При помоле зерна, особенно при сортовом, стремятся максимально удалить оболочки и зародыш, поэтому в муке содержится меньше клетчатки, минеральных веществ, жира и белка и больше крахмала, чем в зерне. Более высокие сорта муки получают из центральной части эндосперма, поэтому в их состав входит больше крахмала и меньше белков, сахаров, жира, минеральных солей, витаминов, которые в основном сосредоточены в его периферийных частях. Наибольшее количество белка содержится в муке I сорта, далее следует мука высшего, II сортов и обойная.
Средний химический состав пшеничной муки (%): крахмал —
66...79; клетчатка0,1...1,9; сахара—1,5...3; белки — 10,3—12,5; жир — 0,9... 1,9; зола — 0,5-1,5.
ГОСТ 26574 на муку хлебопекарную предусматривает оценку ее качества по органолептическим и физико-химическим показателям. К первой группе относятся цвет, запах, вкус и содержание минеральных примесей. Цвет муки должен быть белым с разными оттенками в зависимости от сорта; запах и вкус должны быть свойственны нормальной муке, вкус— без посторонних привкусов, не кислый, не горький, запах —- не затхлый, без признаков плесени. Содержание минеральной примеси определяется при разжевывании муки, при этом не должен ощущаться хруст.
К физико-химическим показателям качества муки относят прежде всего влажность. Она имеет важное значение, так как по влажности устанавливается выход хлеба. Влажность влияет на сохранность муки. Базисная влажность, на которую планируется выход изделий, равна 14,5 %. Допустимая стандартная влажность муки 15,0 %.
Зольность является основным показателем сорта муки. Минеральные вещества распределены в зерне неравномерно: главная их масса находится в оболочках и зародыше, поэтому мука высшего сорта, которая представляет практически чистый эндосперм, характеризуется невысокой зольностью (не более 0,55 %).
Мука I сорта, а тем более II отличается большей зольностью, соответственно не более 0,75 и 1,25 %.
Крупность помола определяется размером частиц муки. Чем выше сорт муки, тем она мельче. Хлеб лучшего качества получается из муки с равномерной крупностью и оптимальными размерами частиц.
Количество клейковины в пшеничной муке разных сортов должно быть не ниже определенных значений: не менее 28 % для муки высшего сорта, 30 % для I copra, 25 % для II сорта, 20 % для обойной. По качеству клейковина должна быть не ниже второй группы.
Содержание металломагнитных примесей в муке не должно превышать 3 мг на I кг, зараженность вредителями хлебных запасов не допускается.
Кислотность не является обязательным показателем качества, ее определение стандартами не предусмотрено. Однако она широко применяется для контроля качества муки. Кислотность муки влияет на кислотность теста и хлеба. Она характеризует свежесть муки и условия ее хранения. При хранении кислотность муки возрастает, особенно при повышенной температуре и влажности воздуха. Кислотность зависит от сорта муки: у низших сортов она больше, чем у высших.
Дня оценки пригодности муки для получения качественного хлеба определяют ее хлебопекарные свойства, к которым относят газообразуюшую способность муки, «силу» муки, ее цвет и способность к потемнению.
Газообразующая способность муки характеризуется количеством диоксида углерода, выделившегося за 5 ч брожения теста, приготовленного из 100 г муки, 60 мл воды и 10 г прессованных дрожжей. Она зависит от содержания собственных сахаров муки и ее сахарообразующей способности. Для муки нормального качества газообразующая способность составляет 1300-1600 мл С02.
«Сила» муки — способность образовывать тесто, обладающее определенными структурно-механическими свойствами, зависит от количества и качества клейковины.
Цвет муки определяется цветом эндосперма зерна, а также цветом и количеством в муке отрубистых частей зерна. Способность муки к потемнению в процессе ее переработки связана с образованием меланинов за счет действия полифенолоксидазы на свободный тирозин. Хлебопекарная мука не должна темнеть в процессе ее переработки.
содержание .. 30 31 32 33 34 35 36 37 38 39 40 ..
zinref.ru
Химический состав муки зависит от состава зерна, из которого она изготовлена, и от ее сорта. Чем выше сорт муки, тем больше в ней содержится крахмала. Содержание остальных углеводов, а также жира, золы, белков и других веществ с понижением сортности муки увеличивается. Особенности количественного и качественного состава муки определяют ее пищевую ценность и хлебопекарные свойства. Азотистые вещества муки в основном состоят из белков. Небелковые азотистые вещества (аминокислоты, амиды и др.) содержатся в небольшом количестве (2—3 % от общей массы азотистых соединений). Чем выше выход муки, тем больше содержится в ней азотистых веществ и небелкового азота.
Белки пшеничной муки. В муке преобладают простые белки— протеины. Белки муки имеют следующий фракционный состав (в %): проламины 35,6; глютелины 28,2; глобулины 12,6; альбумины 5,2. Среднее содержание белковых веществ в пшеничной муке 13—16%, нерастворимого белка 8,7%. Проламины и глютелины различных злаков имеют свои особенности в аминокислотном составе, различные физико-химические свойства и разные названия. Проламины пшеницы и ржи называются глиадинами, проламин ячменя — гордеином, проламин кукурузы — зеином, а глютелин пшеницы — глютенином. Следует учитывать, что альбумины, глобулины, проламины и глютелины — не индивидуальные белки, а только белковые фракции, выделяемые различными растворителями. Технологическая роль белков муки в приготовлении хлебных изделий очень велика. Структура белковых молекул и физико-химические свойства белков определяют реологические свойства теста, влияют на форму и качество изделий. От соотношения дисульфидных и сульфгчдрильных группировок во многом зависит характер вторичной и третичной структуры молекулы белка, а также технологические свойства белков муки, особенно пшеничной. При замесе теста и других полуфабрикатов белки набухают, адсорбируя большую часть влаги. Большей гидрофильностью отличаются белки пшеничной и ржаной муки, способные поглотить до 300 % воды от своей массы. Оптимальная температура для набухания белков клейковины 30 °С. Глиадиновая и глютелиновая фракции клейковины, выделенные отдельно, различаются по структурно-механическим свойствам. Масса гидратированного глютелина коротко растяжимая, упругая; масса глиадина жидкая, вязкая, лишенная упругости. Клейковина, образованная этими белками, включает в себя структурно-механические свойства обеих фракций. При выпечке хлеба белковые вещества подвергаются тепловой денатурации, образуя прочный каркас хлеба. Среднее содержание сырой клейковины в пшеничной муке 20—30%. В различных партиях муки содержание сырой клейковины колеблется в. широких пределах (16—35%). Состав клейковины. Сырая клейковина содержит 30—35 % сухих веществ и 65—70 % влаги. Сухие вещества клейковины на 80—85 % состоят из белков и различных веществ муки (липидов, углеводов и др.), с которыми глиадин и глютенин вступают в реакцию. Белки клейковины связывают около половины всего количества липидов муки. В состав клейковинного белка входит 19 аминокислот. Преобладает глютаминовая кислота (около 39%), пролин (14 %) и лейцин (8 %). Клейковина разного качества имеет одинаковый аминокислотный состав, но разную структуру молекул. Реологические свойства клейковины (упругость, эластичность, растяжимость) в значительной степени определяют хлебопекарное достоинство пшеничной муки. Распространена теория о значении дисульфидных связей в молекуле белка: чем больше дисульфидных связей возникает в молекуле белка, тем выше упругость и ниже растяжимость клейковины. В слабой клейковине дисульфидных и водородных связей меньше, чем в крепкой. Белки ржаной муки. По аминокислотному составу и свойствам белки ржаной муки отличаются от белков пшеничной муки. Ржаная мука содержит много водорастворимых белков (около 36 % от общей массы белковых веществ) и солераство-римых (около 20%). Проламиновая и глютелиновая фракции ржаной муки значительно ниже по массе, в обычных условиях клейковину не образуют. Общее содержание белковых веществ в ржаной муке несколько ниже, чем в пшеничной (10—14%). В особых условиях из ржаной муки можно выделить белковую массу, напоминающую по эластичности и растяжимости клейковину.
Температура клейстеризации, вязкость и скорость старения крахмального клейстера у крахмала различных видов неодинакова. Ржаной крахмал клейстеризуется при температуре 50—55 °С, пшеничный при 62—65 °С, кукурузный при 69—70 °С. Такие особенности крахмала имеют большое значение для качества хлеба.
Присутствие поваренной соли значительно повышает температуру клейстеризации крахмала.Технологическое значение крахмала муки в производстве хлеба очень велико. От состояния крахмальных зерен во многом зависит водопоглотительная способность теста, процессы его брожения, структура хлебного мякиша, вкус, аромат, пористость хлеба, скорость черствения изделий. Крахмальные зерна при замесе теста связывают значительное количество влаги. Особенно велика водопоглотительная способность механически поврежденных и мелких зерен крахмала, так как они имеют большую удельную поверхность. В процессе брожения и расстойки теста часть крахмала под действием 3-амилазы
осахаривается, превращаясь в мальтозу. Образование мальтозы необходимо для нормального брожения теста и качества хлеба.
При выпечке хлеба крахмал клейстеризуется, связывая до 80 % влаги, находящейся в тесте, что обеспечивает образование сухого эластичного мякиша хлеба. Во время хранения хлеба крахмальный клейстер подвергается старению (синерезису), что является основной причиной черствения хлебных изделий. Клетчатка (целлюлоза) находится в периферийных частях зерна и потому в большом количестве содержится в муке высоких выходов. В обойной муке содержится около 2,3 % клетчатки, а в муке пшеничной высшего сорта 0,1—0,15 %. Клетчатка не усваивается организмом человека и снижает пищевую ценность муки. В отдельных случаях высокое содержание клетчатки полезно, так как ускоряет перистальтику кишечного тракта.
Гемицеллюлозы. Это полисахариды, относящиеся к пентозанам и гексозанам. По физико-химическим свойствам они занимают промежуточное положение между крахмалом и клетчаткой. Однако организмом человека гемицеллюлозы не усваиваются. Пшеничная мука в зависимости от сорта имеет различное содержание пентозанов — основной составной части гемицеллюлозы. В муке высшего сорта содержится 2,6 % всего количества пентозанов зерна, а в муке II сорта — 25,5%. Пентозаны делятся на растворимые и нерастворимые. Нерастворимые пентозаны хорошо набухают в воде, поглощая воду, в количестве, превышающем их массу в 10 раз. Растворимые пентозаны или углеводные слизи дают очень вязкие растворы, которые под влиянием окислителей переходят в плотные гели. Пшеничная мука содержит 1,8—2 % слизей, ржаная — почти в два раза больше. Липидами называются жиры и жироподобные вещества (липоиды). Все липиды нерастворимы в воде и растворимы в органических растворителях. Общее содержание липидов в целом зерне пшеницы около 2,7 %, а в пшеничной муке 1,6—2 %. В муке липиды находятся как в свободном состоянии, так и в виде комплексов с белками (липопротеиды) и углеводами (гликолипиды). Последние исследования показали, что связанные с белками клейковины липиды значительно влияют на ее физические свойства. Жиры. Жиры — сложные эфиры глицерина и высокомолекулярных жирных кислот. В пшеничной и ржаной муке различных сортов содержится 1—2 % жира. Жир, находящийся в муке, имеет жидкую консистенцию. Он состоит в основном из глицеридов ненасыщенных жирных кислот: олеиновой, линолевой (преимущественно) и линоленовой. Эти кислоты имеют высокую пищевую ценность, им приписывают витаминные свойства. Гидролиз жира во время хранения муки и дальнейшие превращения свободных жирных кислот существенно влияют на кислотность, вкус муки и на свойства клейковины.
Липоиды. К липоидам муки относятся фосфатиды — сложные эфиры глицерина и жирных кислот, содержащие фосфорную кислоту, соединенную с каким-либо азотистым основанием.
В муке содержится 0,4—0,7 % фосфатидов, относящихся к группе лецитинов, в которых азотистым основанием является холин. Лецитины и другие фосфатиды характеризуются высокой пищевой ценностью и имеют большое биологическое значение. Они легко образуют соединения с белками (липо-протеидные комплексы), играющие важную роль в жизни каждой клетки. Лецитины — гидрофильные коллоиды, хорошо набухающие в воде.
Являясь поверхностно-активными веществами, лецитины также хорошие пищевые эмульгаторы и улучшители хлеба. К растворимым в жирах пигментам относятся каротииоиды и хлорофилл. Цвет каротиноидных пигментов муки желтый или оранжевый, а хлорофилла — зеленый. Каротииоиды обладают провитаминными свойствами, так как способны в животном организме превращаться в витамин А.
Наиболее известные каротииоиды представляют собой ненасыщенные углеводороды. При окислении или восстановлении каротиноидные пигменты переходят в бесцветные вещества. На этом свойстве основан процесс отбеливания пшеничной сортовой муки, применяющийся в некоторых зарубежных странах. Во многих странах отбеливание муки запрещено, так как оно снижает ее витаминную ценность. Жирорастворимым витамином муки является витамин Е, остальные витамины этой группы в муке практически отсутствуют. Мука состоит в основном из органических веществ и небольшого количества минеральных (зольных). Минеральные вещества зерна сосредоточены главным образом в алейроновом слое, оболочках и зародыше. Особенно много минеральных веществ в алейроновом слое. Содержание минеральных веществ в эндосперме невелико (0,3—0,5%) и повышается от центра к периферии, поэтому зольность служит показателем сорта муки.
Большая часть минеральных веществ муки состоит из соединений фосфора (50%), а также калия (30%), магния и кальция (15 %).
В ничтожных количествах содержатся различные микроэлементы (медь, марганец, цинк и др.). Содержание железа в золе разных сортов муки 0,18—0,26%. Значительная доля фосфора (50—70 %) представлена в виде фитина — (Са — Mg — соль инозитфосфорной кислоты). Чем выше сорт муки, тем меньше в ней находится минеральных веществ. В зернах хлебных злаков содержатся разнообразные ферменты, сосредоточенные главным образом в зародыше и периферийных частях зерна. Ввиду этого в муке высоких выходов ферментов содержится больше, чем в муке низких выходов.
Ферментная активность у разных партий муки одного и того же сорта различна. Она зависит от условий произрастания, хранения, режимов сушки и кондиционирования зерна перед помолом. Повышенная активность ферментов отмечена у муки, полученной из несозревшего, проросшего, морозобойного или пораженного клопом-черепашкой зерна. Высушивание зерна при жестком режиме снижает активность ферментов, при хранении муки (или зерна) она также несколько уменьшается.
Ферменты активны только при достаточной влажности среды, поэтому при хранении муки влажностью 14,5 % и ниже действие ферментов проявляется очень слабо. После замеса в полуфабрикатах начинаются ферментативные реакции, в которых участвуют гидролитические и окислительно-восстановительные ферменты муки. Гидролитические ферменты (гидролазы) разлагают сложные вещества муки на более простые водорастворимые продукты гидролиза.
Отмечено, что протеолиз в пшеничном тесте активизируется веществами, содержащими сульфгидрильные группы, и другими веществами с восстанавливающими свойствами (аминокислота цистеин, тиосульфат натрия и др.).
Вещества с противоположными свойствами (со свойствами окислителей) значительно тормозят протеолиз, укрепляют клейковину и консистенцию пшеничного теста. К ним относятся перекись кальция, бромат калия и многие другие окислители. Воздействие окислителей и восстановителей на процесс протеолиза сказывается уже при очень малых дозировках этих веществ (сотые и тысячные доли % от массы муки). Существует теория, что влияние окислителей и восстановителей на протеолиз объясняется тем, что они меняют соотношение сульфгидрильных групп и дисульфидных связей в молекуле белка, а возможно и самого фермента. Под действием окислителей за счет групп образуются дисульфидные связи, укрепляющие структуру белковой молекулы. Восстановители разрывают эти связи, что вызывает ослабление клейковины и пшеничного теста. Химизм действия окислителей и восстановителей на протеолиз окончательно не установлен.
Автолитическая активность пшеничной и особенно ржаной муки служит важнейшим показателем ее хлебопекарного достоинства. Автолитические процессы в полуфабрикатах при их брожении, расстойке и выпечке должны протекать с определенной интенсивностью. При повышенной или пониженной авто-литической активности муки в худшую сторону изменяются реологические свойства теста и характер брожения полуфабрикатов, возникают различные дефекты хлеба. Для того чтобы регулировать автолитические процессы, необходимо знать свойства важнейших ферментов муки. К основным гидролитическим ферментам муки относятся протеолитические и амилолитические ферменты. Протеолитические ферменты. Действуют на белки и продукты их гидролиза.
Наиболее важная группа протеолитических ферментов — протеиназы. Протеиназы типа папаин содержатся в зерне и муке разных злаков. Оптимальными показателями для действия зерновых протеиназ являются рН 4—5,5 и температура 45— 47 °С. При брожении теста зерновые протеиназы вызывают частичный протеолиз белков. Интенсивность протеолиза зависит от активности протеиназ и от податливости белков действию ферментов. Протеиназы муки, полученной из зерна нормального качества, мало активны. Повышенная активность протеиназ наблюдается у муки, приготовленной из проросшего зерна и особенно из зерна, пораженного клопом-черепашкой. Слюна этого вредителя содержит сильные протеолитические ферменты, проникающие при укусе в зерно. Во время брожения в тесте, приготовленном из муки нормального качества, происходит начальная стадия протеолиза без заметного накопления водорастворимого азота.
В процессе приготовления пшеничного хлеба регулируют протеолитические процессы, меняя температуру и кислотность полуфабрикатов и добавляя окислители. Протеолиз несколько тормозит поваренная соль. Амилолитические ферменты. Это р- и а-амилазы. р-Амилаза обнаружена как в проросших зернах хлебных злаков, так и в зернах нормального качества; а-амилаза содержится только в проросших зернах. Однако заметное количество активной а-амилазы обнаружено в ржаном зерне (муке) нормального качества. а-Амилаза относится к металлопротеинам; в состав ее молекулы входит кальций, р- и а-амилазы находятся в муке главным образом в связанном с белковыми веществами состоянии и после протеолиза расщепляются. Обе амилазы гидролизуют крахмал и декстрины. Наиболее легко разлагаются амилазами механически поврежденные зерна крахмала, а также оклейстеризованный крахмал. Работами И. В. Глазунова установлено, что при осахаривании декстринов р-амилазой образуется в 335 раз больше мальтозы, чем при осахаривании крахмала. Нативный крахмал гидролизуется р-амилазой очень медленно. р-Амилаза, действуя на амилозу, превращает ее полностью в мальтозу. При воздействии на амилопектин р-амилаза отщепляет мальтозу только от свободных концов глюкозидных цепочек, вызывая гидролиз 50—54 % количества амилопектина. Высокомолекулярные декстрины, образующиеся при этом, сохраняют гидрофильные свойства крахмала. а-Амилаза отщепляет ответвления глюкозидных цепочек амилопектина, превращая его в низкомолекулярные декстрины, не окрашиваемые йодом и лишенные гидрофильных свойств крахмала. Поэтому при действии а-амилазы субстрат значительно разжижается. Затем декстрины гидролизуются а-амилазой до мальтозы. Термолабильность и чувствительность к рН среды у обеих амилаз различны: а-амилаза по сравнению с (3-амилазой более термоустойчива, но более чувствительна к подкислению субстрата (снижению рН). р-Амилаза наиболее активна при рН среды -4,5—4,6 и температуре 45—50 °С. При температуре 70 °С р-ами-лаза инактивируется. Оптимальная температура а-амилазы 58—60 °С, рН 5,4—5,8. Влияние температуры на активность а-амилазы зависит от реакции среды. При снижении рН снижается как температурный оптимум, так и температура инактивации а-амилазы.
По мнению некоторых исследователей, а-амилаза муки инактивируется в процессе выпечки хлеба при температуре 80— 85 °С, однако некоторые работы показывают, что в пшеничном хлебе а-амилаза инактивируется только при температуре 97— 98 °С.
Активность а-амилазы значительно снижается в присутствии 2 % хлористого натрия или 2 % хлористого кальция (в кислой среде).
р-Амилаза теряет свою активность при воздействии веществ (окислителей), превращающих сульфгидрильные группы в дисульфидные. Цистеин и другие препараты с протеолитической активностью активизируют р-амилазу.Слабое нагревание водно-мучной суспензии (40—50° С) в течение 30— 60 мин повышает активность р-амилазы муки на 30—40%. Подогрев до температуры 60—70 °С снижает активность этого фермента.
Технологическое значение обеих амилаз различно. Во время брожения теста р-амилаза осахаривает некоторую часть крахмала (в основном механически поврежденные зерна) с образованием мальтозы. Мальтоза необходима для получения рыхлого теста и нормального качества изделий из муки пшеничной сортовой (если сахар не входит в рецептуру изделия) . Осахаривающее влияние р-амилазы на крахмал значительно возрастает при клейстеризации крахмала, а также в присутствии а-амилазы. Декстрины, образуемые а-амилазой, осахариваются р-амилазой значительно легче, чем крахмал. При действии обеих амилаз крахмал может быть гидролизован полностью, в то время как одна р-амилаза гидролизует его примерно на 64 %. Оптимальная температура для а-амилазы создается в тесте при выпечке из него хлеба. Повышенная активность а-амилазы может привести к образованию значительного количества декстринов в мякише хлеба. Низкомолекулярные декстрины плохо связывают влагу мякиша, поэтому он становится липким и заминающимся. Об активности а-амилазы в пшеничной и ржаной муке судят обычно по автолитической активности муки, определяя ее по числу падения или по автолитической пробе. Кроме амилолитических и протеолитических ферментов на свойства муки и качество хлеба оказывают влияние другие ферменты: липаза, липоксигеназа, полифенолоксидаза. Липаза. Липаза расщепляет жиры муки при хранении на глицерин и свободные жирные кислоты. В зерне пшеницы активность липазы невысока. Чем больше выход муки, тем выше сравнительная активность липазы. Оптимум действия зерновой липазы находится при рН 8,0. Свободные жирные кислоты — основные кислореагирующие вещества муки. Они могут подвергаться дальнейшим превращениям, влияющим на качество муки — теста — хлеба. Липоксигеназа. Липоксигеназа относится к окислительно-восстановительным ферментам муки. Она катализирует окисление кислородом воздуха некоторых ненасыщенных жирных кислот, превращая их в гидроперекиси. Наиболее интенсивно липоксигеназа окисляет линолевую, арахидоновую и линоленовую кислоты, которые входят в состав жира зерна (муки). Точно так же, но более медленно, действует липоксигеназа в составе нативных жиров на жирные кислоты.
Оптимальными параметрами для действия липоксигеназы является температура 30—40 °С и рН среды 5—5,5. Гидроперекиси, образовавшиеся из жирных кислот под действием липоксигеназы, сами являются сильными окислителями и оказывают соответствующее влияние на свойства клейковины. Липоксигеназа содержится во многих злаках, в том числе в зернах ржи и пшеницы. Полифенолоксидаза (тирозиназа) катализирует окисление аминокислоты тирозина с образованием темноокрашенных веществ — меланинов, вызывающих потемнение мякиша хлеба из сортовой муки. Полифенолоксидаза содержится главным образом в муке высоких выходов. В пшеничной муке II сорта наблюдается большая активность этого фермента, чем в муке высшего или I сорта. Способность муки к потемнению в процессе переработки зависит не только от активности полифенолоксидазы, но и от содержания свободного тирозина, количество которого в муке нормального качества незначительно. Тирозин образуется при гидролизе белковых веществ, поэтому мука из проросшего зерна или пораженного клопом-черепашкой, где протеолиз идет интенсивно, имеет высокую способность к потемнению (почти в два раза выше, чем у нормальной муки). Кислотный оптимум полифенолоксидазы находится в зоне рН 7—7,5, а температурный — при 40—50 °С. При рН ниже 5,5 полифенолоксидаза неактивна, поэтому при переработке муки, имеющей способность к потемнению, рекомендуется повышать кислотность теста в необходимых пределах.
himoza1977.blogspot.com
просмотров - 562
Показатель | Содержание (%) в пшеничной муке (по сортам) | ||
высший | первый | второй | |
Вода | 14,0 | 14,0 | 14,0 |
Белки | 10,3 | 10,6 | 11,6 |
Жиры | 1,1 | 1,3 | 1,8 |
Ненасыщенные жирные кислоты | 0,2 | 0,2 | 0,3 |
Моно-, дисахариды | 1,6 | 1,8 | 2,2 |
Крахмал | 68,5 | 66,7 | 62,0 |
Углеводы | 70,6 | 69,0 | 64,8 |
Пищевые волокна | 3,5 | 4,4 | 6,7 |
Зола | 0,5 | 0,7 | 1Д |
При помоле зерна, особенно сортовом, стремятся максимально удалить оболочки и зародыш, в связи с этим в муке содержится меньше клетчатки, минеральных веществ, жира и белка и больше крахмала, чем в зерне. Более высокие сорта муки получают из центральной части эндосперма, в связи с этим в их состав входит больше крахмала и меньше белков, Сахаров, жира, минеральных солей, витаминов, которые в основном сосредоточены в его периферийных частях.
К органическим веществам пшеничной муки относятся белки, нуклеиновые кислоты, углеводы, липиды, ферменты, витамины, пигменты и некоторые другие вещества; к неорганическим — минеральные вещества и вода.
Белки играют важную роль в технологии хлеба.
Содержание белков в пшеничной муке может колебаться в широких пределах (от 10 до 26 %) в зависимости от сорта пшеницы и условий ее выращивания. Белковые вещества муки в основном (на 80 %) состоят из проламинов и глютелинов. Остальные белки — это альбумины, глобулины и протеиды. Проламины и глютелины различных злаков имеют специфический состав и свойства.
Проламин пшеницы принято называть глиадином, а глютелин пшеницы — глютенином. Соотношение глиадина и глютенина в пшеничной муке примерно одинаковое. Глиадин и глютенин содержатся
только в эндосперме, особенно в его краевых частях, в связи с этим в сортовой муке их больше, чем в обойной. Ценным специфическим свойством глиадина и глютенина является их способность образовывать клейковину.
Клейковина образуется при отмывании пшеничного теста в воде. Клейковина содержит 65—70 % влаги и 30—35 % сухих веществ, состоящих главным образом из белков (90 %), а также других веществ муки, поглощенных белками при набухании. От количества и качества клейковины зависят хлебопекарные свойства муки. Мука содержит в среднем 20—35 % сырой клейковины. Качество клейковины характеризуется ее цветом, растяжимостью (способностью растягиваться на определенную длину) и эластичностью (способностью почти полностью восстанавливать свою форму после растягивания). В клейковине содержание минеральных веществ иное, чем в зерне, из которого она отмыта.
При отмывании клейковины некоторые минеральные вещества в ней концентрируются, к примеру фосфор, магний, сера. Особое место занимает калий, который отличается повышенной прочностью связи с неклейковинными веществами зерна и при отмывании почти весь остается в зерновых остатках. Общая зольность клейковины по сравнению с зерном выше. Содержание железа, цинка и меди в клейковине значительно выше, чем в зерне. Например, в зерне пшеницы железа содержится 0,26 %, в золе клейковины — 1,90 %.
Большие различия в зольности отдельных частей зерна используют для контроля выхода (по сортам) и качества пшеничной муки. По массовой доле золы в пшеничной муке можно судить о количестве периферийных частиц и зародыша, перешедших из зерна.
В составе муки преобладают углеводы. Οʜᴎ принимают участие в брожении теста.
В пшеничной муке содержатся различные углеводы: моносахариды (пентозы, гексозы), дисахариды (сахароза, мальтоза), полисахариды (крахмал, клетчатка, гемицеллюлозы, целлюлоза, слизи). Из простых углеводов наибольшее значение имеют гексозы — глюкоза и фруктоза. Οʜᴎ сбраживаются дрожжами при брожении теста и принимают участие в реакции меланоидинообразования при выпечке.
Чем ниже сорт муки, тем выше в ней содержание Сахаров. Общее содержание Сахаров в пшеничной муке составляет 0,8—1,8 %. Собственные сахара муки легко сбраживаются дрожжами в первые 1,5—2 ч брожения теста͵ в этом заключается их технологическое значение.
Крахмал — важнейший углевод, содержание которого может достигать 80 % на СВ муки. Чем больше в муке крахмала, тем меньше в ней белков. Технологическое значение крахмала в производстве хлеба очень велико: в процессе замеса теста значительная часть добавленной воды удерживается на поверхности крахмальных зерен (особенно механически поврежденных). В процессе брожения под действием фермента (3-амилазы часть крахмала осахаривается, превращаясь в мальтозу, необходимую для брожения теста. При выпечке хлеба крахмал клейстеризуется, связывая большую часть влаги. В клейстеризованном состоянии крахмал обладает коллоидными свойствами и вместе с клейковиной определяет консистенцию теста-хлеба, обеспечивает формирование структуры хлеба и образование сухого эластичного мякиша. Температура клейстеризации пшеничного крахмала составляет 62—65 °С.
Целлюлоза, гемицеллюлозы и лигнин относятся к пищевым волокнам, оказывающим значительное влияние на пищевую ценность и качество хлеба. Οʜᴎ содержатся главным образом в отрубях, не усваиваются организмом человека и в основном выполняют физиологические функции, выводя из организма тяжелые металлы и снижая энергетическую ценность хлеба.
Содержание этих углеводов также зависит от сорта муки. В обойной муке около 2,3 % клетчатки, а в сортовой —0,1—0,15 %, содержание гемицеллюлоз соответственно 2,0 и 8,0 %. Клетчатка и гемицеллюлозы вследствие капиллярно-пористой структуры хорошо впитывают влагу и повышают водопоглотителъную способность муки, особенно обойной. Слизи, или гумми, — коллоидные полисахариды, образующие при соединении с водой вязкие и клейкие растворы. В пшеничной муке их содержится 0,8—2,0 %, в ржаной — до 2,8 %.
Липиды — жиры и жироподобные вещества играют важную роль в физиологических и биохимических процессах. Пшеничная и ржаная мука в зависимости от сорта содержит 0,8—2,5 % жира. В состав жира входят главным образом ненасыщенные высокомолекулярные жирные кислоты. В липидах содержится большая группа жирорастворимых витаминов (A, D, Е, К). При хранении муки жир легко разлагается, что может вызвать порчу муки (прогоркание).
К жироподобным веществам относятся фосфатиды (0,4—0,7 %) и другие соединения. Фосфатиды, в отличие от жиров, кроме глицерина и жирных кислот содержат фосфорную кислоту и азотистое основание.
Ферменты пшеничной муки выполняют функции регуляторов биохимических процессов. Это биологические катализаторы белковой природы, обладающие способностью ускорять течение различных биохимических реакций в полуфабрикатах хлебопекарного производства. Из большого числа ферментов, содержащихся в пшеничной муке, очень важное значение имеют протеолитичес-кие ферменты, действующие на белковые вещества, затем амилазы (а- и р-амилазы, гидролизующие крахмал, а-глюкозидаза, гид-ролизующая мальтозу, и 3-глицерол-липаза, катализирующая расщепление липидов).
Витамины входят в состав ферментов активной своей частью. В муке содержатся многие важные витамины: тиамин (Bj), рибофлавин (В2), пантотеновая кислота (Вз), пиридоксин (В6), токоферол (Е), ниацин (РР) и др.
Пигменты — красящие вещества муки. Наибольшее значение имеют каротиноиды, окрашивающие частицы муки в желтый и оранжевый цвет.
Влага в муке имеет большое значение при оценке ее качества, стойкости при хранении и технологического достоинства. Влага, входящая в состав муки, является активным участником всех биохимических и микробиологических процессов. Большое значение имеет критическая влажность муки — 15,0 %. Ниже этого уровня все процессы в муке протекают замедленно, и качество муки сохраняется без изменений. При повышенной влажности значительно усиливаются дыхание микроорганизмов и протекание биохимических процессов, что приводит к потере сухих веществ (СВ), самосогреванию и быстрому ухудшению качества муки.
Между влажностью муки и активностью ферментов существует тесная связь. Вода — обязательный участник ферментативных процессов. С повышением влажности муки активность ферментов возрастает. Форма и виды связи влаги с сухими веществами муки оказывают влияние на процессы, протекающие в ней, на ее сохранность, режимы переработки и пищевую ценность. Различают свободную и связанную влагу.
Под свободной понимают влагу, которая отличается невысокой энергией связи с тканями зерна и легко из него удаляется. Наличие свободной влаги обусловливает значительную интенсивность дыхания и биохимических процессов, которые делают муку нестойкой при хранении и приводят к ее быстрой порче и ухудшению хлебопекарных свойств.
Под связанной понимают влагу с высокой энергией связи с компонентами муки. Она обусловливает стойкость муки при хранении.
Связанная влага имеет ряд особенностей. По сравнению с капельно-жидкой влагой у нее более низкая температура замерзания (до —20 °С и ниже), более низкая удельная теплоемкость [0,07 кДж/(кг • К)], пониженная упругость пара; большая теплота испарения, низкая способность растворять твердые вещества.
Влажность, ниже которой биохимические процессы в муке резко ослабляются, а выше которой начинают интенсивно ускоряться, называют критической. При этом в муке появляется свободная влага, т. е. вода с пониженной энергией связи, обеспечивающая интенсификацию ферментативных процессов. Для пшеничной, ржаной и тритикалевой муки критическая влажность составляет 15 %.
Гигроскопическая влага — это влага, сорбированная мукой из воздуха; равновесная — это влага, содержание которой соответствует данному сочетанию относительной влажности и температуры воздуха. Влажность муки*, соответствующая состоянию равновесия, называют равновесной. На величину равновесной влажности оказывает влияние температура: при одной и той же относительной влажности воздуха более высокой температуре соответствует более низкая равновесная влажность муки, и наоборот, при снижении температуры равновесная влажность муки повышается.
Большая часть веществ, входящих в состав муки, способна к ограниченному набуханию в воде. К ним относится большинство белковых веществ, крахмал, клетчатка, слизи и другие высокомолекулярные углеводы. Не набухают в воде и не растворяются в ней гидрофобные вещества — липиды, жирорастворимые пигменты и витамины, каротиноиды, хлорофилл и др. Часть веществ муки (сахара, свободные аминокислоты, альбумины, фосфаты, большинство левулезанов и др.) растворяется в воде. Белковые вещества, набухая, поглощают до 250% воды, крахмал— до 35, слизи —до 800%.
Вещества, способные к набуханию в воде, составляют в пшеничной муке высшего сорта 80 %, ржаной — 12%.
Хлебопекарные свойства пшеничной муки
Качество хлебобулочных изделий зависит от хлебопекарных свойств муки, пошедшей на их приготовление. Изделия, соответствующие стандартам и удовлетворяющие запросам потребителя, должны иметь соответствующий данному сорту внешний вид, объем и форму, окраску корки, равномерную тонкостенную пористость, эластичный незаминающийся мякиш, приятный вкус и аромат. Такой хлеб получают из муки с хорошими хлебопекарными свойствами, которые в основном обеспечиваются углеводно-амилазным и белково-протеиназным комплексами. Определенное влияние на качество хлеба оказывают цвет, способность к потемнению и крупность помола муки.
Сведения о хлебопекарных свойствах перерабатываемой муки необходимы для организации и коррекции технологического процесса производства хлебобулочных изделий.
Кроме показателей качества, нормируемых ГОСТ Р 52189—03, достоинство муки оценивают по ее хлебопекарным свойствам (рис. 3.1).
Газообразующая способность муки.Обусловлена содержанием собственных Сахаров в ней и ее сахарообразующей способностью. Под газообразующей способностью понимают объем диоксида углерода, образующегося за 5 ч брожения теста͵ замешенного из 100 г муки влажностью 14 %, 60 см3 воды и 10 г хлебопекарных прессованных дрожжей при температуре 30 °С.
Собственные сахара муки представлены (% на СВ): глюкозой — 0,01—0,05; фруктозой —0,015—0,05; мальтозой — 0,005—0,05; сахарозой — 0,1— 0,55; олигосахаридами — раффинозой, мелибиозой и глюкофруктозанами — 0,5—1,1. Общее их содержание в пшеничной муке колеблется в пределах 0,7—1,8 % на СВ.
Сахарообразующая способность характеризуется массой образовавшейся мальтозы из крахмала водно-мучной смеси, приготовленной из 10 г муки и 50 см3 воды, гидролизуемого амилолитичес-кими ферментами муки в течение 1 ч ее настаивания при 27 °С.
Мальтоза практически обеспечивает углеводное питание дрожжевым клеткам, роль которых заключается в интенсивном сбраживании моносахаров и дисахаров. Дисахара сбраживаются после их предварительного гидролиза ферментами дрожжевой клетки: а-глюкозидаза гидролизует мальтозу на две молекулы глюкозы.
Полученные в результате гидролиза моносахара сбраживаются дрожжами до этанола и диоксида углерода с выделением теплоты G (кДж).
От содержания сбраживаемых дрожжами Сахаров зависит процесс брожения пшеничных хлебопекарных полуфабрикатов при созревании. Минимальное количество сбраживаемых углеводов, крайне важное на весь цикл приготовления хлеба, составляет около 6,0 % от массы СВ в муке. Часть этих Сахаров сбраживается при брожении теста и в период расстойки, а другая часть (2—3 %) участвует в образовании ароматических веществ и в реакции мелано-идинообразования в период выпечки.
Собственные сахара муки обеспечивают жизнедеятельность дрожжевых клеток в первые 60—90 мин брожения при общем цикле приготовления теста (опарный способ) 5—6 ч.
Дефицит Сахаров покрывается мальтозой, образующейся при гидролизе крахмала р-амилазой муки. Масса накапливающейся мальтозы зависит от активности (3-амилазы и физико-химических свойств зерен крахмала (соотношение амилозы и амилопектина в пшеничном крахмале 25 : 75 практически не изменяется и не сказывается на сахарообразующей способности муки). Процесс гидролиза зависит в основном от размера крахмальных зерен и степени их механического повреждения при размоле зерна. Чем мельче частицы муки, тем больше разрушены зерна крахмала, на которые
действует (3-амилаза, и тем больше их атакуемость ферментом. Сахарообразующая способность пшеничной муки, полученной из зерна нормального качества, зависит главным образом от атакуемое™ крахмала (3-амилазой.
Крахмал — основной источник образования Сахаров (СбН10О5) состоит из амилозы и амилопектина.
(3-Амилаза, действуя на амилозу, гидролизует ее до мальтозы (рис. 3.2). Этот процесс начинается с нередуцирующего конца цепочки амилозы до полного превращения ее в мальтозу. В случае если молекула амилозы содержит четное число глюкозидных остатков, то она расщепляется практически на 100 %, если же содержит нечетное число молекул глюкозы, то остатком служит молекула маль-тотриозы.
Амилопектин гидролизуется частично на прямолинейных участках разветвленной цепи с нередуцирующего конца с образованием мальтозы (см. рис. 3.2). В местах ветвления глюкозидные участки связаны се-1,6-глюкозидными связями, которые (3-амилазой не разрываются. Действие фермента прекращается около второго или третьего глюкозидного остатка, примыкающего к а-1,6-глюкозид-ной связи. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, при действии (3-амилазы на крахмал образуется мальтоза, неĸᴏᴛᴏᴩᴏᴇ количество глюкозы и накапливается непрогидролизованный (3-амилодекстрин, содержащий все без исключения а-1,6-связи. Амилопектин расщепляется (3-амилазой на 50 %. Так как в пшеничном крахмале соотношение амилозы и амилопектина составляет 25 : 75, то эти составляющие крахмала осахариваются |3-амилазой на 60 %, а 40 % остаются в виде конечного (3-амилодекстрина. У муки, полученной из проросшего зерна, в котором кроме (3-амилазы в активном состоянии содержится а-амилаза (декстриногенный фермент), сахарообразующая способность резко увеличивается.
Амилоза Амилопектин
------- >• —действие (J-амилазы
Показатель Содержание (%) в пшеничной муке (по сортам) высший первый второй Вода 14,0 14,0 14,0 Белки 10,3 10,6 11,6 Жиры 1,1 1,3 1,8 Ненасыщенные жирные кислоты 0,2 0,2 0,3 Моно-, дисахариды 1,6 1,8 2,2 Крахмал 68,5 66,7 62,0 ... [читать подробенее]
oplib.ru
Пример видео 3 | Пример видео 2 | Пример видео 6 | Пример видео 1 | Пример видео 5 | Пример видео 4 |
Администрация муниципального образования «Городское поселение – г.Осташков»