Использование микроорганизмов в пищевой промышленн. Микроорганизмы используются в промышленном производстве витаминов муки


Получение витаминов - способы, производство, биотехнология

Витамины – низкомолекулярные органические вещества, которые имеют биологическую активность. В естественной среде источниками этих представителей БАВ являются растения и микроорганизмы. В промышленности витамины получают в основном химическим синтезом. Однако микробиологическое производство этих соединений также имеет место. Так, например, менахиноны и кобаламины – продукт исключительно микробный. Микробиологическим путем получают всего несколько витаминов: В12 (цианокобаламин), В2 (рибофлавин), витамин С и эргостерин.

Довольно перспективным направлением в биотехнологии является микробиологический синтез биотина, который применяется в животноводстве в качестве кормовой добавки. В настоящее время для получения биотина прибегают к химическому синтезу.

Витамин В12

Мировая продукция витамина В12 составляет 9-11 тыс. кг в год. Из них около половины используется на медицинские цели, остальное количество – в животноводстве как кормовые добавки.

Природные продуценты витамина В12 обнаружены среди пропионовокислых бактерий р. Propionibacterium, которые синтезируют от 1 до 8 мг/л этого витамина. С помощью селекционно­генетических методов получен мутант P. shermanii M­82, который дает до 60 мг/л продукта.

Продуцент B. rettgerii также используется для микробиологического синтеза В12.

В качестве активных продуцентов витамина В12 используют также актиномицеты и родственные микроорганизмы: путем мутаций и ступенчатого отбора получен штамм Nocardia rugosa, накапливающий до 18 мг/л В12.

Активные продуценты В12 обнаружены среди представителей Micromonospora.

Высокой природной продуктивностью обладают представители метанотрофов Methanosarcina, Methanococcus, среди которых выделен штамм Methanococcus halophilus, обладающий самым высоким среди природных штаммов уровнем продукции – 16 мг на 1 г биомассы.

В значительных количествах В12 синтезируют анаэробные бактерии р. Clostridium, что особенно эффективно для технологии.

Известны активные продуценты В12 среди Pseudomonas. У P. denitricans получен мутант, дающий на оптимизированной среде до 59 мг/л. Штамм запатентован фирмой «Merck» для промышленного получения В12.

Не менее интересными являются термофильные бациллы B. circulans и B. stearother mophilus, которые дают выход 2-6 мг/л В12.

В России наиболее широкое применение имеют Propionibacterium freudenreichii. Их культивируют на кукурузном экстракте и глюкозе в анаэробных условиях 72 ч для роста культуры. Во 2­й фазе синтеза в ферментер вносят предшественник – специфическое азотистое основание и проводят ферментацию еще 72 ч. Затем экстрагируют В12 из биомассы бактерий и очищают его химическим способом. Такой витамин применяют в медицинских целях.

Для нужд животноводства В12 получают с использованием смешанной культуры, содержащей бактерии Methanosarcina barkeri, Methanobacterium formicum. Содержание В12 в культуре достигает 6,5 мг/г сухой биомассы.

Рибофлавин

Витамин В2 в природе продуцируется растениями, дрожжами, мицелиальными грибами, а также некоторыми бактериями.

Среди прокариот известными продуцентами флавинов являются микобактерии и ацетобутиловые бактерии. Из актиномицетов – Nocardia eritropolis.

Среди мицелиальных грибов – Aspergillus niger и Eremothecium ashbyi.

Рибофлавин микробиологического производства используется исключительно как кормовая добавка в животноводстве. Основным продуцентом кормового рибофлавина является Eremothecium ashbyi, который культивируют на кукурузной или соевой муке с минеральными добавками. Культивирование ведут до появления спор. Его лучшие продуценты, полученные с помощью мутаций и ступенчатого отбора продуцируют до 600 мг/л продукта. Затем культуральную жидкость выпаривают и используют в виде порошковой добавки к кормам в животноводстве.

Эргостерин

Эргостерин – исходный продукт производства жирорастворимого витамина D2. Эргостерин является также основным стерином дрожжей, поэтому данные микроорганизмы – основной источник для селекционных работ. Так, Saccharomyces carlbergensis дает до 4,3 мг/л, S. ellipsoideus – 1,5 мг/л, Rhodotorula glutinis – 1 мг/л, Candida utilis – 0,5 мг/л продукта.

Наиболее широко в производстве используют дрожжи Saccharomyces carlbergensis, а также S. cerevisiae.

В последние годы появились сообщения о промышленном производстве витамина С. Сообщается о конструировании генно­инженерными методами продуцента: гены Corynebacterium перенесли в Erw. herbicola.

В рекомбинантном штамме объединены способность эрвиний превращать глюкозу в глюконовую кислоту со способностью коринебактерий превращать последнюю в гулоновую кислоту, которую химическим способом превращают в аскорбиновую кислоту.

Убихиноны – витаминоподобные соединения. Продуценты – Rhodopseudo monas gelatinosa (1510-2450 мкг/г сухого вещества).

Каротиноиды

Каротиноиды – обширная группа природных пигментов, которые синтезируют хемо­ и фототрофами: прокариотами, мицелиальными грибами и дрожжами, водорослями и высшими растениями.

Каротиноиды, синтезируемые микроорганизмами, существуют в клетке в свободной форме, а также в виде гликозидов, в виде эфиров жирных кислот и как каротинобелковые комплексы. Ценность этих соединений для млекопитающих заключается в том, что это источник витамина А.

До настоящего времени не созданы истинные продуценты каротиноидов, а каротиноиды микроорганизмов выделяют из микроорганизмов преимущественно путем экстракции.

В настоящее время описано около 500 различных каротиноидов. Структурно каротиноиды представляют собой хромофор (или ядро), соединенное с изопреновыми остатками. Отличительной чертой хромофора является наличие сопряженных двойных связей. От числа этих связей зависит интенсивность окраски каротиноидов. Так, алифатические каротиноиды, содержащие не более 5 сопряженных связей – соединения неокрашенные.

Среди них наибольшее значение имеют фитоин и фитофлуин. Синтезируемые Neurospora crassa каротиноиды имеют 9 сопряженных связей и имеют ярко­желтое окрашивание. С увеличением двойных связей окраска усиливается до красной и фиолетовой.

Высшие каротиноиды имеют в молекуле до 45-50 атомов углерода. К таким каротиноидам относятся сарцинаксантин, продуцируемый Sarcina lutea.

Некоторые каротиноиды могут иметь в своем составе терминальную группировку как алеуреаксантин гриба Aleuria aurantia.

Другие каротиноиды имеют терминальную гидроксигруппу как ­гидроксифлеиксантин Blakeslea trispora.

Расположение каротиноидов в клетках микроорганизмов различно. Так, у фототрофных микроорганизмов каратиноиды сосредоточены в фотосинтезирующем аппарате. У хемотрофных – ассоциированы с клеточной мембраной. У некоторых (Micrococcus radiodurans) – локализованы в клеточной стенке. У грибов – в липидных глобулах цитоплазмы.

Каратиноиды выполняют в клетке роль антиоксидантов и защищают ее от явления перекисного окисления. Кроме того, каратиноиды являются фотоловушками, собирающими световую энергию.

Получение каротиноидов в промышленности

Традиционные методы получения каратиноидов сводятся к гомогенизации биомассы и экстракции каратиноидов полярными растворителями (ацетон, метанол). Индивидуальные каратиноиды получают путем разделения методом тонкослойной хроматографии на силикагеле. Следующим по распространенности является химический синтез каратиноидов.

Традиционными продуцентами микробного синтеза каратиноидов являются бактерии, мицелиальные грибы и дрожжи. Из фототрофных бактерий можно отметить Chloroexus и некоторые виды Rhodopseudomonas. Эта группа бактерий интересна тем, что у них в зависимости от интенсивности освещения можно регулировать выход каратиноидов.

В Японии биомассу этих бактерий используют для окрашивания желтка яиц в качестве добавки в рацион. Каратиноиды получают в значительных количествах из некоторых водорослей, например из Chlorella sp.

Cреди хемотрофов продуцентами каратиноидов являются дрожжи Rhodotorula gracilis, R. rubra, R. diobovatum, а также актиномицеты – Act. chrestomycetes, Act. chysomallus, микобактерии – Mycobacterium phei, M. carotenum, мицелиальные грибы семейств – из семейств Mucoraceae, Dacrymycetaceae.

Продуцентами ­каротина традиционно являются мукоровые грибы Blakeaslea trispora и Choanephora conjuncta.

www.robotblog.ru

Микроорганизмы промышленные - Бактерии

Микроорганизмы вездесущи. Они есть не только в окружающей среде, но и в самом человеке. Поэтому неудивительно, что в процессе развития промышленности назрела необходимость использования и микроорганизмов. Промышленное культивирование микроорганизмов началось сравнительно недавно, но уже успело достичь определенных высот. Так, всероссийская коллекция промышленных микроорганизмов насчитывает несколько тысяч экземпляров, некоторые из них используются практически каждым человеком ежедневно.

Промышленное использование микроорганизмов вышло на такой уровень, когда глицерин или лимонную кислоту получают только в лабораториях. К наиболее распространенным промышленным штаммам микроорганизмов, которые используются в каждом доме, относятся те, из которых производят уксусную, молочную и лимонную кислоты, этанол, различные ароматизаторы и красители, а также глутамат натрия. Последний используется в большинстве современных приправ, хотя хозяйки даже не задумываются о его происхождении.

Ароматические вещества и вещества, усиливающие вкус продукта, пользуются большим спросом среди современного общества. Это обусловлено тем, что люди все более часто переходят на растительную и малокалорийную пищу, которая не имеет ярко выраженного вкуса и запаха. На помощь приходит генная инженерия, позволяющая экспрессировать гены растений в клетки микроорганизмов и наоборот.

Помимо этого микроорганизмы промышленные используются в качестве сырья для производства лекарств, которые не имеют никаких аналогов. Грибы и дрожжи могут синтезировать такие виды белка, которые невозможно получить в природной среде. Эти белки и препараты на их основе спасают жизни миллионам людей с заболеваниями легких. Что уже и говорить о пенициллине, с которого и началось стремительное восхождение микроорганизмов к славе в области медицины. Микроорганизмы являются единственными ингибиторами некоторых ферментов, которые применяются в медицине для снижения уровня сахара в крови, понижения артериального давления и других способов лечения и улучшения самочувствия человека.

Помимо лекарственных препаратов с помощью микроорганизмов получают также витамины группы В, фолиевую кислоту, витамин С. Также с их помощью ежедневно производят вакцины от различных заболеваний. Вакцина – это, по сути своей, заражение человека болезнью в такой дозе, с которой может справиться его иммунитет. Но некоторые болезни не имеют таких форм, их невозможно получить никакими другими способами, только с помощью микроорганизмов. В микробную клетку внедряют гены вирусных белков, которые проявляют наиболее высокую иммуногенность. Далее эти клетки культивируют в лабораторных условиях, клетки синтезируют вирусные белки в достаточно большом количестве, и эти белки на заключительном этапе становятся составляющей частью вакцины.

На основе микроорганизмов в будущем планируют разработать специальное биотопливо, а также множество других инноваций. Поэтому микробы – неисчерпаемый источник для изобретений, способных облегчить жизнь человека.

mikrobiki.ru

Промышленное использование микроорганизмов

Благодаря большому разнообразию синтезируемых ферментов микроорганизмы могут выполнять многие химические процессы более эффективно и экономично, чем если бы эти процессы проводились химическими методами. Изучение биохимической деятельности микроорганизмов позволило подобрать условия для максимальной активности их как продуцентов различных полезных ферментов - возбудителей нужных химических реакций и процессов. Микроорганизмы все шире применяются в различных отраслях химической и пищевой промышленности, сельском хозяйстве, медицине.

В нашей стране создана и успешно развивается новая отрасль промышленности - микробиологическая, все производства которой базируются на деятельности микроорганизмов.

Микроорганизмы, с помощью которых производят пищевые продукты, называют культурными. Их получают из чистых культур, которые выделяют из отдельных клеток. Последние хранят в музейных коллекциях и снабжают ими различные производства.

В результате осуществляемых культурными микроорганизмами химических реакций растительное или животное сырье превращается в пищевые продукты. С помощью микроорганизмов получают многие жизненно важные продукты питания, и хотя изготовление их знакомо человеку с древних времен, роль в нем микроорганизмов открыта сравнительно недавно.

Хлебопекарное производство.

Хлебопечение основано на деятельности дрожжей и молочнокислых бактерий, развивающихся в тесте. Совместное действие этих микроорганизмов приводит к сбраживанию сахаров муки. Дрожжи вызывают спиртовое брожение, молочнокислые бактерии - молочнокислое. Образующиеся при этом молочная и другие кислоты подкисляют тесто, поддерживая оптимальный для жизнедеятельности дрожжей уровень рН. Углекислый газ разрыхляет тесто и ускоряет его созревание.

Применение культурных микроорганизмов в виде прессованных хлебопекарных дрожжей, сушеных или жидких заквасок улучшает вкус и аромат хлеба.

Производство сыра.

Сыроделие основано на деятельности многих видов микроорганизмов: молочнокислые (термофильный стрептококк), пропионовокислые бактерии и др. Под действием молочнокислых бактерий происходит накопление молочной кислоты и сквашивание молока, под действием других полезных микроорганизмов созревает сыр. Участвуют в этом процессе также некоторые плесневые грибы. Сычужный фермент и молочнокислые бактерии производят глубокое расщепление белков, сахара и жира. Различные бактерии вызывают накопление в острых сырах летучих кислот, придающих им специфический аромат.

Получение кисломолочных продуктов.

Творог, сметану, масло, ацидофилин, простоквашу приготовляют на чистых Культурах с применением различных заквасок. Молоко предварительно пастеризуют. Для производства творога и сметаны применяют мезофильные молочнокислые бактерии; ряженки, варенца и подобных продуктов - термофильные стрептококки и болгарскую палочку; ацидофилина - кислотовыносливые молочнокислые бактерии; кефира - многокомпонентные закваски, состоящие из дрожжей, молочнокислых и часто уксуснокислых бактерий. Для изготовления кислосливочного масла в пастеризованные сливки вносят закваску молочнокислых бактерий и выдерживают до требуемой кислотности.

Пивоваренное, спиртовое, ликеро-водочное и винодельческое производства.

Вино, пиво, квас, водку и другие напитки приготовляют с применением дрожжей, вызывающих спиртовое брожение сахарсодержащих жидкостей. В результате брожения жидкости (сусла, бражки, сока и т. п.) образуется алкоголь, СО2 и незначительные количества побочных продуктов. Подсобную роль выполняют молочнокислые бактерии: они подкисляют среду и облегчают деятельность дрожжей (например, при производстве кваса). В производстве спирта и пива для осахаривания заторов применяют также ферментные препараты грибного и бактериального происхождения.

Квашение и соление.

Сущность этого способа консервирования состоит в создании условий для преимущественного развития одних микроорганизмов - молочнокислых бактерий и подавления развития других - гнилостных бактерий. Заквашивают капусту, огурцы, помидоры, яблоки, арбузы. Применяют этот способ также при закладывании на длительное хранение корма для скота - заквашивается зеленая масса из трав, растительных остатков и др. Этот процесс носит название силосования кормов.

Получение органических кислот.

Уксусную, молочную и лимонную кислоты производят также с помощью микроорганизмов. Молочную кислоту получают способом брожения из сахарсодержащего сырья - патоки, крахмала, молочной сыворотки и др.

Молочнокислые бактерии выращивают на средах, содержащих до 15 % сахара. Выход молочной кислоты достигает 60-70 % массы содержащегося в заторе сахара.

Промышленное получение уксуса для пищевых целей основано на уксуснокислом брожении. Уксуснокислые бактерии в специальных чанах на буковых стружках окисляют поступающую питательную среду - уксусно-спиртовой раствор - до уксусной кислоты.

Лимонную кислоту раньше получали из плодов цитрусовых. В настоящее время ее также получают путем брожения. Возбудителем брожения является гриб Аспергиллус нигер, основное сырье - черная патока. Брожение происходит в растворе с содержанием 15 % сахара в аэробных условиях при температуре около 30 °С. Лимонная кислота используется в кондитерской промышленности, производстве безалкогольных напитков, сиропов, кулинарии и медицине.

www.comodity.ru

Тема 18. ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ВИТАМИНОВ

Среди биологически активных веществ, необходимых для нормального развития организма животных, одно из первых мест занимают витамины. Важное значение витаминов объясняется их участием в биохимических реакциях, способностью служить катализаторами процессов, обеспечивающих обмен веществ в организме и его связь с окружающей средой.

Витамины - низкомолекулярные органические соединения, присутствующие в живых клетках в низких концентрациях и являющиеся компонентами энзиматических систем, ответственных за различные реакции.

Производство витаминов осуществляется следующими основными путями:

1. Экстракция витаминных препаратов из растительного или животного сырья. С этого направления начиналась витаминная промышленность, поскольку первые витаминные препараты были получены именно таким путем. Например, витамин В12 получали из сырой печени крупного рогатого скота, каротин - из моркови. Но в настоящее время доля витаминов, получаемых этим методом, незначительна ввиду очень низкого содержания их в природном сырье и ограниченности сырьевых ресурсов.

2. Химический синтез витаминов. Производство синтетических витаминов занимает, пожалуй, ведущее место в современной витаминной промышленности, поскольку основная номенклатура витаминных препаратов представлена веществами, полученными химическим синтезом из химических видов сырья или сочетанием химического синтеза с биосинтезом. Однако такой способ производства витаминов представляет собой сложный, многоступенчатый процесс, сопряженный с большими производственными затратами, что делает конечные продукты слишком дорогими.

3.Биосинтез витаминов. Некоторые витамины, имеющие сложное строение, химический синтез которых в крупномасштабном производстве невозможен или экономически нецелесообразен, получают исключительно биосинтезом, с применением микроорганизмов, способных к сверхсинтезу и накоплению определенных витаминов. Примером может служить производство цианкобаламина (витамина В12). Микробиологический синтез применяется также в производстве витаминных концентратов, предназначенных для сельского хозяйства, поскольку в данном случае обычно в индивидуальном чистом виде витамины не выделяют.

Следует отметить условность такого деления витаминной промышленности. Производство некоторых витаминов включает и химические стадии и стадии биотрансформации с применением микроорганизмов (например, производство аскорбиновой кислоты). Витамин рибофлавин получают и синтетическим и микробиологическим путями. Некоторые витаминные препараты (например, витамин D2) получают путем химической модификации провитаминов или витаминов, выделенных из растительных клеток или органов животных.

Использование витаминов в качестве добавок в корма животных требует крупномасштабного производства, поэтому возникла необходимость в более дешевых способах изготовления витаминов. Таким перспективным способом получения ряда витаминов оказался микробиологический синтез.

Для нормальной деятельности организма животных и птиц необходимо включать в рационы витамины A, D, К, группы В и др.

Микробиологическая промышленность нашей страны выпускает кормовые препараты витаминов В2 и B12. Кроме того, микробиологическим можно считать и производство витамина D2, который образуется из эргостерина при облучении ультрафиолетовым светом кормовых дрожжей.

Микроорганизмы содержат много различных витаминов, которые чаще всего являются компонентами ферментов. Состав и количество витаминов в биомассе зависят от биологических свойств культуры микроорганизмов и условий их культивирования. Так, кормовые дрожжи, получаемые на гидролизатах древесины и углеводородах, сравнительно богаты витаминами группы В и содержат (в расчете сухую биомассу) следующие витамины (мг/кг):

Тиамин (В1) - 15-18

Рибофлавин (В2) - 45-68

Биотин - 1,6-3,0

Инозит - 400 -5000

Фолиевая кислота - 3,4-21,5

Никотиновая кислота - 440-610

Продукцию микроорганизмами отдельных витаминов можно увеличить, изменяя состав питательной среды. Например, количество витамина В2 (рибофлавина) в биомассе дрожжей зависит от интенсивности аэрации и содержания железа в среде.

На содержание витаминов в клетках дрожжей заметное влияние оказывают микроэлементы. Так, небольшие добавки марганца способствуют накоплению в клетках дрожжей инозита, а повышенные дозы кобальта приводят к увеличению содержания витамина В6 (пиридоксина).

Производство кормового концентрата витамина В2 (рибофлавин).Витамин В2 входит в структуру многих ферментов, в составе которых участвует в клеточном дыхании, синтезе белков и жиров, регулировании состояния нервной системы, функции печени и т.д. При его недостатке резко замедляется рост, нарушается белковый обмен.

Суточная потребность в витамине В2 составляет для птиц 3 - 4 г (кристаллического препарата) на 2 т корма, а для свиней 10 - 15 мг на 100 кг живой массы.

В природных условиях источниками рибофлавина являются высшие растения, дрожжи, мицелиальные грибы и бактерии. Большинство микроорганизмов образуют свободный рибофлавин.

В 30-е годы XX в. был найден суперпродуцент витамина - микроскопический гриб Eremothecium ashbyii, образующий до 6000 мкг рибофлавина на 1 г сухого вещества культуральной жидкости.

Для получения витамина В2 можно также использовать культуру дрожжей, ацетобутиловые бактерии, продуцент лизина Brevibakterium и др.

 

Микроорганизмы — продуценты рибофлавина

Микроорганизмы - продуценты Выход витамина (мг%)
Clostridium acetobytylicum
Mycobakterium smegmatis
Mycocandida riboflavina
Candida flaveri
Eremothecium ashbyii 2480-6000
Ashbyii gossipii

 

Технология получения кормового препарата витамина В2 микробиологическим способом достаточно проста. В качестве микроорганизма-продуцента обычно используют Е. ashbyii.

Технологический процесс производства состоит из трех основных стадий:

1. Аэробная ферментация.

2. Термолиз и концентрирование.

3. Сушка, размол, гранулирование и упаковка.

Посевной материал и стерильный воздух получают по типовой, для многих микробиологических производств, схеме. Ферментация осуществляется в типовых биореакторах объемом 63 - 100 м3 в стерильных условиях при температуре 28 - 30 °С.

Основными ингредиентами питательной среды являются соевая мука, меласса, технический жир и минеральные соли (СаСОз, КН2Р04). Продуцент витамина В2 выращивают также на средах, где источником углерода является глюкоза, сахароза, крахмал, пшеничная мука. В качестве источника азота используют молочную сыворотку, рыбную и кукурузную муку или экстракт, казеин. Развитие гриба-продуцента стимулируется добавлением ненасыщенных жирных кислот, биотина, тиамина, инозита, ростовых веществ, содержащихся в зародыше пшеницы, картофельном соке и дрожжевом автолизате.

Известно использование в производственных условиях питательной среды следующего состава:

- 1 - 3 % мелассы, гидрола или глюкозы;

- 3 - 8 % кукурузного экстракта или дрожжевого автолизата;

- добавки N, Mg, Zn.

Культивирование продуцента проводят поверхностным или глубинным способом. Витамин накапливается в клетках гриба-продуцента, либо в виде предшественника - флавина дениннуклеотида, либо в свободном состоянии.

Время культивирования длится 60 - 80 ч до начала лизиса мицелия гриба и образования спор (определяется микроскопически). При этом содержание рибофлавина в культуральной жидкости достигает 1200 мг/л.

Для сохранения штамма Е. ashbyii в активном состоянии рекомендуется производить систематический его рассев на твердые питательные среды и отбирать колонии наиболее .интенсивно окрашенные в оранжевый цвет. Яркая окраска колонии коррелирует с высокой способностью к синтезу рибофлавина.

При подготовке инокулята гриб пересевают последовательно по схеме:

посев на скошенную агаризованную среду в пробирке > жидкая среда > колба > бутыль > инокулятор

Винокуляторе культуру выращивают в течение 21-26 ч. затем ее переводят а биореактор с питательной средой, содержащей кукурузную и соевую муку, кукурузный экстракт, свекловичный сахар, КН2РО4, СаСОз, NaCl и технический жир.

Среду стерилизуют в смесителе при 120 – 122 °С в течение 1 часа. Культивирование в биореакторе ведут до начала лизиса клеток и появления спор (определяют микроскопически). Температура культивирования 28 - 30 °С, давление воздуха в биореакторе (1 - 2) - 104 Па, расход воздуха 1,5 -2,0 л в минуту на 1 л культуральной жидкости. Выход рибофлавина около 1200 мг/л.

По окончании процесса ферментации культуральную жидкость вместе с мицелием передают в вакуум-выпарные аппараты (10), где ее нагревают до 80 °С с целью разрушения (термолиза) клеточных структур и одновременно ведут процесс концентрирования (упаривания) до содержания сухих веществ 30-40 %.

Полученный после упаривания концентрат в виде сиропообразной биомассы высушивают в распылительной сушилке до содержания влаги не более 8 %. В результате получают смесь биомассы мицелия Е. Ashbyii и сухих остатков питательной среды. Для получения однородного товарного продукта смесь размалывают и просеивают. На современных предприятиях концентрат гранулируют, поскольку порошкообразный продукт сильно пылит, что создает неудобства работы с ним и приводит к его потерям.

Кормовой концентрат витамина В2 представляет собой обработанную, высушенную, размолотую или гранулированную биомассу гриба-продуцента Е. ashbyii, содержащую не менее 15 мг рибофлавин на 1 г вещества. Помимо витамина В2, концентрат содержит 0,3- 0,5 % других витаминов группы В (В1, В6, В12, никотинамид), около 20% белковых веществ, а также полисахариды, липиды, минеральные соли.

Для животноводства можно получить кормовой рибофлавин как отход при производстве ацетона. Продуцентами витамина при этом являются ацетобутиловые бактерии.

Преимущество и рентабельность микробного синтеза витамина В2 иллюстрируется следующими цифрами: из 1 т моркови получают 1г витамина, из 1 т тресковой печени - 6 г, а из 1 т культуральной жидкости гриба E.ashbyii - 25 кг.

Производство витамина В12(цианкобаламина).Среди неполимерных биологически активных соединений витамин В12 имеет самое сложное строение. Его принятое химическое название α-(5.6-диметилбензимидазолил)-кобамидцианид. Это единственный витамин, в структуру которого входит кобальт.

Организм животных не способен к самостоятельному синтезу витамина В12. Этот витамин полностью отсутствует в растительных кормах в относительно небольших количествах содержится в кормах животного происхождения (рыбной и мясо-костной муке, молочных отходах). Среди растительного мира витамин В12 был обнаружен лишь у нескольких видов высших растений (горох, фасоль, побеги бамбука), причем его происхождение в этих растениях окончательно не установлено.

Цианокобаламин обладает высокой биологической активностью с широким спектром действия. В первую очередь, витамин B12 необходим для нормального кроветворения и созревания эритроцитов, он является эффективным противоанемическим препаратом. Цианкобаламин применяют для лечения злокачественного малокровия, железодефицитных анемий, апластических анемий и т.п. Этот препарат назначают также при лучевой болезни, заболеваниях печени, полиневритах, болезни Дауна, детском церебральном параличе и многих других заболеваниях.

Для медицинских целей субстанцию витамина B12 получают в виде кристаллического тёмно-красного порошка, содержащего не менее 99% основного вещества. Из этой субстанции готовят различные лекарственные формы, из которых наиболее широкое применение находят цианкобаламин в изотоническом растворе хлорида натрия для инъекций, и таблетки, содержащие цианкобаламин и фолиевую кислоту.

Важное значение витамин B12 имеет для животноводства. Его недостаток тормозит рост животных и приводит к серьезным заболеваниям. Цианкобаламин повышает усвояемость белка растительных кормов и является необходимым фактором полноценного питания животных.

Для животноводства отечественной промышленностью выпускается кормовой концентрат витамина В12 (КМВ-12), который по эффективности не уступает кристаллическому препарату, но является более дешевым и доступным для широкого использования в сельском хозяйстве.

Полный химический синтез витамина В12 был осуществлен через 25 лет после его открытия Р. Вудвордом и А. Эшенмозером с участием большой группы исследователей нескольких лабораторий университетов и научных центров США, Англии, Франции, Японии. Конечно, химический синтез витамина В12 имеет чисто теоретическое значение и в настоящее время он не может рассматриваться как вариант промышленного производства этого важного препарата.

Единственным способом получения витамина В12 в промышленном масштабе является его микробиологический синтез с использованием специальных штаммов микроорганизмов, способных активно продуцировать этот витамин.

В природе витамин В12 синтезируют многие микроорганизмы (например, метанобразующие и пропионовокислые бактерии), а также бактерии,осуществляющие термофильное метановое сбраживание сточных вод.

Активно продуцируют витамин В12 представители рода Pzopionibacterium, природные штаммы которых образуют 1,0 - 8,5 мг/л цианокобаломина, а полученный искусственный мутант P. shermanii M-82 способен накапливать витамин В12 до 58 мг/л.

Практический интерес для микробиологического синтеза этого витамина имеют представители актиномицетов и родственных микроорганизмов. Истинный витамин B12 в значительных количествах синтезируют Nocardia rugoza (до 18 мг/л), а также представители рода Miromonospora. Высокой кобаламинсинтезирующей активностью обладают метаногенные бактерии, например, Methanosarcina barkeri, M. vacuolita и отдельные штаммы галофильного вида Methanococcus halophilus (до 16 мг/л).

Цианкобаламин синтезируют строго анаэробные бактерии из рода клостридий. В значительных количествах образуют витамин B12 ацетогенные клостридии C.thermoaceticum, C.formicoaceticum и Acetobacter woodi, синтезирующие ацетат из СО2.

Известны активные продуценты витамина Bi2 переди псевдомонад. Некоторые штаммы Pseudomonas denitrificans нашли применение для промышленного получения цианкобаламина (фирма Merk, США). Интерес представляют также термофильные бациллы, а именно Bacillus eirculans и Bacillus stearothermophilus, которые растут при температурах, соответственно, 60 °С и 75 °С и за 18-24 культивирования без соблюдения стерильных условий дают высокие выходы витамина.

В нашей стране в качестве основного продуцента витамина В12, получаемого для медицинских целей, используют культуру Propionibacterium shermanii, а для нужд животноводства применяют смешанную культуру, содержащую термофильные метанобразующие бактерии.

На большинстве зарубежных предприятий витамин В12выпускают в чистом кристаллическом виде и применяют в животноводстве большей частью в виде компонентов премиксов.

Указанный способ включения витамина В12 в кормовые рационы применяется и в нашей стране.

 



infopedia.su

Микроорганизмы в производстве

Использование микроорганизмов в производстве витаминов, гормонов, аминокислот, кормового белка.

 

Промышленная микробиология – наиболее древняя, но и самая развитая отрасль биотехнологии сегодня. Использует важнейшие свойства микроорганизмов: высокую скорость размножения и способность быстро преобразовывать окружающую среду. Важнейшее преимущество микробиологической промышленности – дешевое сырье. Микроорганизмы могут утилизировать в качестве питательных субстратов отходы других производств: целлюлозно-бумажного, сахарного, молочного и др.

Биосинтетические возможности мира микробов огромны. Многие из них обладают свойством прототрофности – способностью синтезировать самые сложные органические вещества из простых или минеральных. Микробиологической промышленностью выпускаются ферменты, витамины, гормоны животных и стимуляторы роста растений, лекарственные препараты, кормовые и пищевкусовые добавки, ароматизаторы, усилители вкуса, подсластители, растворители для лако-красочной промышленности, смазочные материалы, биоудобрения и биопестициды.

Одной из важнейших мировых проблем является проблема белка. Содержание его в растительной пище невелико и не соответствует потребности человека. Для откорма животных на мясо используется около 2/3 валового сбора зерна. Причем, кормовая ценность злаков невелика, так как она ограничивается низким содержанием лизина – незаменимой аминокислоты. Для получения качественного кормового белка можно использовать микроорганизмы, в первую очередь, дрожжи. Например, мощным продуцентом белка является род Candida. Для производства аминокислот используют культуры Micrococcusglutamicus, Brevibacterium, Corуnebacterium.

Микроорганизмы используют в производстве:

Вина Saccharomyces vini

Пива Saccharomyces cerevisiae, Sacch. carlsbergensis

Белка Candida utilis

Липидов Lipomyces lipoferum

Кормовых добавок дрожжи Candida utilis, цианобактерии Spirulina, одноклеточная водоросль Chlorella

Ферментов Aspergillus niger

Антибиотиков Penicillium, Streptomyces, Cephalosporium

ВитаминовВ12 – Propionibacterium

Д – облученные дрожжи рода Candida

В2 – Eremoteciumashbyi

po-teme.com.ua

Производство витаминов

Витамины (от лат vita – жизнь) – «амины жизни» – низкомолекулярные органические соединения, которые, присутствуя в малых количествах, обеспечивают нормальное протекание биохимических процессов. Витамины – незаменимые факторы питания.

Изучение физиологии и генетики микроорганизмов – продуцентов витаминов, выяснение путей биосинтеза каждого из них позволили создать теоретические основы получения микробиологическим способом практически всех известных витаминов. Однако биотехнологическими методами целесообразнее производить лишь особо сложные по строению витамины: В2, В12, β-каротин и предшественники витамина D. Остальные витамины либо выделяют из природных источников, либо синтезируют химическим путем.

Получение витамина В2 (рибофлавин). Вплоть до 30-х годов прошлого столетия рибофлавин выделяли из природного сырья. В наибольшей концентрации он присутствует в моркови и печени трески. Из 1 т моркови можно изолировать лишь 1 г рибофлавина, а из 1 т печени – 6 г. В 1935 г. обнаружен активный продуцент рибофлавина – гриб Eremothecium ashbyii, способный при выращивании на 1 т питательной смеси синтезировать 25 кг витамина В2. Сверхсинтеза рибофлавина добиваются действием на дикие штаммы мутагенов, нарушающих механизм ретроингибирования синтеза витамина В2, флавиновыми нуклеотидами, а также изменением состава культуральной среды. Отбор мутантов ведут по устойчивости к аналогу витамина В2 – розеофлавину.

Технология получения. В состав среды для роста продуцентов витамина В2 входят соевая мука, кукурузный экстракт, сахароза, карбонат кальция, хлорид натрия, гидрофосфат калия, витамины, технический жир. Грибы чувствительны к изменению состава среды и подвержены инфицированию. Перед подачей в ферментер среду подвергают стерилизации, добавляя к ней антибиотики и антисептики.

В качестве посевного материала используют споры Е. ashbyii. Процесс ферментации грибов для получения кормового рибофлавина длится 3 суток при температуре 28 – 30 °С. Концентрация рибофлавина в культуральной жидкости может достигать 1,4 мг/мл. По завершении процесса ферментации культуральную жидкость концентрируют в вакууме, высушивают на распылительной сушилке (влажность 5 – 10 %) и смешивают с наполнителями.

Методами генной инженерии сконструирован рекомбинантный штамм продуцента Bacillus subtilis, характеризующийся увеличенной дозой оперонов, которые контролируют синтез рибофлавина и способный синтезировать втрое больше по сравнению с Е. ashbyii количество рибофлавина за 40 ч ферментации.

Получение витамина В12. Витамин В12 открыт в 1948 г. одновременно в США и Англии. Первоначально витамин В12 получали исключительно из природного сырья, но из 1 т печени можно было выделить всего лишь 15 мг витамина. В 1972 г. в Гарвардском университете был осуществлен химический синтез предшественника витамина В12. Химический синтез корнестерона – структурного элемента корринового кольца витамина, включающий 37 стадий, в крупных масштабах не воспроизведен из-за сложности процесса. Учитывая важную функцию витамина в организме человека (он является противоанемическим фактором), его мировое производство достигло 10 т в год, из которых 6,5 т расходуют на медицинские нужды, а 3,5 т – в животноводстве.

Единственный способ получения витамина В12 в настоящее время – микробиологический синтез. Его продуцентами являются прокариоты и, прежде всего, пропионовые бактерии, которые и в естественных условиях образуют этот витамин. Выделено 14 видов пропионовокислых бактерий, продуцирующих витамин В12. Мутанты Propionibacterium shermanii и Pseudomonas denitrificans продуцируют в жидкой среде до 58 – 59 мг/л цианкобаламина.

Технология получения. Для получения высокоочищенных препаратов витамина В12 пропионовокислые бактерии культивируют периодическим способом без доступа кислорода на средах, содержащих глюкозу, казеиновый гидролизат, витамины, неорганические соли, хлорид кобальта. Уровень рН ферментационной среды поддерживают около 7,0 добавлением Nh5OH; продолжительность ферментации 6 суток; через 3 суток в среду добавляют 5,6-диметилбензимидазол. Добавление в среду предшественника 5,6-диметилбензимидазола по окончании первой ростовой фазы (5 – 6 суток) стимулирует быстрый (18 – 24 ч) синтез витамина с выходом последнего до 30 мг/л.

Цианкобаламин накапливается в клетках бактерий, поэтому операции по выделению витамина заключаются в следующем: сепарирование клеток, экстрагирование водой при рН 4,5 – 5,0 и температуре 85 – 90 оС, в присутствии стабилизатора (0,25 % раствор натрия нитрита), Экстракция протекает в течение часа, после чего водный раствор охлаждают, нейтрализуют раствором едкого натрия, добавляют коагулянты белка – хлорид железа трехвалентного и алюминия сульфат с последующим фильтрованием. Фильтрат упаривают и дополнительно очищают, используя методы ионного обмена и хроматографии, после чего проводят кристаллизацию витамина при 3 – 4 оС из в одноацетонового раствора.

При реализации данного биотехнологического процесса не забывать о высокой светочувствительности витамина В12, поэтому все операции необходимо проводить в затемненных условиях (или при красном свете).

Получение β-каротина. β-Каротин – это изопреноидные соединения, из одной молекулы β-каротина при гидролизе образуются две молекулы витамина A. Каротиноиды можно выделить из ряда растительных объектов – моркови, тыквы, облепихи, люцерны, а также они синтезируются многими пигментными микроорганизмами из родов Aleuria, Blakeslea, Corynebacterium, Flexibacter, Fusarium, Halobacterium, Phycomyces, Pseudomonas, Rhodotorula, Sarcina, Sporobolomyces и др. Характерно, что содержание β-каротина у микроорганизмов во много раз превышает содержание этого провитамина у растений. Так, в 1 г моркови присутствует всего 60 мкг, в то время как в 1 г биомассы гриба Blaneslea trispora – 3 – 8 тыс. мкг.

Каротиноиды локализуются в виде сложных эфиров и гликозидов в клеточной мембране микроорганизмов, либо в гранулах цитоплазмы.

Технология получения. Питательные среды для производства β-каротина включают источники углерода, азота, витаминов, микроэлементов, специальных стимуляторов (кукурузно-соевая мука, растительные масла, керосин, -ионон или изопреновые димеры). В качестве продуцентов каротиноидов можно использовать бактерии, дрожжи, мицелиальные грибы. Более часто применяют зигомицеты Blakeslea trispora и Choanephora conjuncta. При совместном культивировании штаммы этих видов могут образовать 3 – 4 г каротина на 1 л среды. Па первом этапе получения каротиноидов штаммы культивируют раздельно, а затем – совместно при 26 оС и усиленной аэрации с последующим переносом в основной ферментатор. Длительность ферментации – 6 – 7 дней. Каротиноиды извлекают ацетоном или другим неполярным растворителем. В целях очистки и более тонкого разделения используют методы хроматографии. Витамин A из β-каротина сравнительно легко можно получить при гидролизе.

Получение витамина D2. Витамин D – это группа родственных соединений, в основе которых находится эргостерин, который обнаружен в клеточных мембранах эукариот. Содержание эргостерина в дрожжевых клетках колеблется в пределах 0,2 – 11 %. Кроме дрожжей продуцентами эрогостерина могут быть мицелиальные грибы – аспергиллы и пенициллы, в которых содержится 1,2 – 2,2 % эргостерина. Трансформация эргостерина в витамин D2 (кальциферол) происходит под влиянием ультрафиолетового облучения. При этом разрывается связь в кольце (позиции 9,10) и образуется двойная связь в боковой цепочке (позиции 22, 23).

Технология получения. В качестве продуцентов эргостерина микробиологическим способом используют культуры дрожжей, которые получают на средах, обеспечивающих полноценное развитие клеток. Основная среда содержит источник углерода и пониженное количество азота (высокое значение C/N), обогащается ацетатом (активатором биосинтеза стеринов). Культивирование дрожжей проводят при температуре, близкой к оптимальной для конкретного штамма, и выраженной аэрации. Спустя 3 – 4 суток, в зависимости от ростовых характеристик и биосинтетической активности культуры, клетки сепарируют и подвергают вакуум-высушиванию. Затем сухие дрожжи облучают ультрафиолетовыми лучами – УФЛ (длина волны 280 – 300 нм) в течение оптимального по продолжительности времени. Облучение дрожжей можно проводить до сепарирования клеток в тонком слое 5 % суспензии, учитывая малую проникающую способность УФЛ.

Облученные сухие дрожжи применяют в животноводстве; в промышленности их выпускают под названием «кормовые гидролизные дрожжи, обогащенные витамином D2». В таком препарате содержится не менее 46 % сырого белка, незаменимые аминокислоты (лизин, метионин, триптофан) и 5000 ME витамина D2 в 1 г.

В случае получения кристаллического витамина D2 клетки продуцента гидролизуют соляной кислотой при 110 оС, затем температуру снижают до 75 – 78 оС и добавляют этанол. Спиртовой экстракт упаривают до 70 %-го содержания сухих веществ. Полученный «липидный концентрат» обрабатывают раствором едкого натрия. Эргостерин кристаллизуется из неомыленнной фракции концентрата при 0 оС. Его очищают повторной перекристаллизацией. Кристаллы высушивают, растворяют в серном эфире, облучают УФЛ, эфир отгоняют, раствор витамина D2 концентрируют и кристаллизуют.

8.1.3. Производствоорганических кислот

В настоящее время биотехнологическими способами в промышленных масштабах синтезируют ряд органических кислот. Из них лимонную, глюконовую, кетоглюконовую и итаконовую кислоты получают лишь микробиологическим способом, молочную, салициловую и уксусную – как химическим, так и микробиологическим способами, а яблочную – химическим и энзиматическим путем.

Получение лимонной кислоты. Лимонная кислота впервые была выделена из сока лимона и перекристаллизована Шееле. В лимонах содержится 7 – 9 % этой кислоты; в Италии и Испании до сих пор ее получают из лимонов, но на 99 % ее продукция основана на микробиологическом синтезе. Объем мирового производства цитрата составляет 400 тыс. т/год.

Большая часть лимонной кислоты (70 %) используется в пищевой промышленности, около 12 % в фармацевтической промышленности и около 18 % – для технических целей. Использование лимонной кислоты в пищевой промышленности обусловлено ее хорошей растворимостью, низкой токсичностью и приятным кислым вкусом. Лимонная кислота образует хелаты с металлами, поэтому ее применяют для их очистки.

Способность грибов образовывать лимонную кислоту при росте на средах с углеводами впервые была установлена немецким ученым Вемером в 1893 г. Для промышленного производства лимонной кислоты используют главным образом культуру гриба Aspergillus niger, а также A. wentii.

Метаболический путь. Лимонная кислота – обычный метаболит цикла трикарбоновых кислот, в небольшом количестве присутствует в клетках разных микроорганизмов. Некоторые грибы (в первую очередь A. niger) способны синтезировать огромное количество этой кислоты. Накопление в культуральной среде существенных количеств цитрата – промежуточного соединения цикла Кребса – невыгодно для организма и является следствием дисбаланса метаболизма или нарушения его генетической природы. Сверхсинтез лимонной кислоты происходит при лимитировании роста грибов-продуцентов минеральными компонентами среды и одновременном избыточном содержании источника углерода. В условиях лимитирования роста гриба недостатком одного или нескольких минеральных компонентов (Fe, Mn, N, Р или S) после полного поглощения из среды дефицитного элемента он прекращает расти, однако продолжает потреблять имеющийся в среде источник углерода. При этом в клетках гриба начинает накапливаться лимонная кислота, которая в дальнейшем выделяется в среду.

Технология получения. В настоящее время получение лимонной кислоты биотехнологическими способами широко применяется в промышленности. Разработаны технологии получения лимонной кислоты как поверхностным, так и глубинным способами. Основной питательной средой в обоих случаях служит меласса – отход сахарного производства, она содержит 48 – 50 % сахара. Для хорошего роста и развития гриба среда должна содержать минеральные соли: Nh5Cl, Kh3PO4, ZnSO4. В мелассе содержатся соли тяжелых металлов, угнетающие рост гриба и образование лимонной кислоты. Для осаждения этих солей к мелассе добавляют желтую кровяную соль K4[Fe(CN)6].

Процесс ферментации, ведущий к образованию лимонной кислоты, проводят при низких значениях рН (3 – 4), что облегчает поддержание стерильных условий ферментации и уменьшает возможность образования побочных продуктов. Предполагают, что в кислой среде стимулируется гликолиз, что обеспечивает направление потока углерода в цикл Кребса. В щелочной среде происходит накопление щавелевой и глюконовой кислот. В процессе ферментации можно выделить две фазы: 1) активного роста гриба и 2) интенсивного кислотообразования, рост мицелия в этот период становится незначительным.

На первой стадии идет рост мицелия, а на второй, после выхода культуры в стационарную фазу – интенсивный синтез лимонной кислоты. В конце ферментации массу мицелия отделяют путем фильтрования и промывают. Затем при рН < 3,0 в виде кальциевой соли осаждают щавелевую кислоту, а из маточного раствора выделяют лимонную кислоту в форме средней соли, кристаллизующейся в комплексе с четырьмя молекулами воды. Свободную кислоту выделяют из промытых кристаллов соли после их обработки сульфатом кальция. Высокоочищенные препараты лимонной кислоты получают после дополнительной процедуры очистки методом ионообменной хроматографии. Выход продукта составляет 85 %.

Похожие статьи:

poznayka.org

Биотехнологическое производство витаминов, примеры.

Любые студенческие работы ДОРОГО, КАЧЕСТВЕННО

100 руб. бонус за первый заказ. Всего 3 вопроса:

Узнать стоимость работы

Витамины– низкомолекулярные органические вещества, которые имеют биологическую активность. В естественной среде источниками этих представителей БАВ являются растения и микроорганизмы. В промышленности витамины получают в основном химическим синтезом. Однако микробиологическое производство этих соединений также имеет место. Так, например, менахиноны и кобаламины – продукт исключительно микробный. Микробиологическим путем получают всего несколько витаминов: В12 (цианокобаламин), В2 (рибофлавин), витамин С и эргостерин. 

Биотехнологическим путем получают некоторые витамины. Наибольшее значение имеет биотехнологическое производство витаминов В2, В12 и С, а также в-каротина (провитамина А). Для их получения используют различные бактерии, дрожжевые и плесневые грибы. В зависимости от вида микроорганизма и витамина питательной средой могут служить кукурузно-соевая мука, растительные масла, керосин, метанол, глюкоза, сахароза.

Так, витамин В2 получают ферментацией растительного масла с помощью гриба Ashbya gossypii. Ведущие компании рассматривают возможность полной замены химической технологии производства витамина В2 на биотехнологическую.  Важное направление биотехнологии, интенсивно развивающееся в последнее время, - освоение возобновляемых источников энергии, наиболее распространённым из которых является биогаз.

Высокой природной продуктивностью обладают представители метанотрофов Methanosarcina, Methanococcus, среди которых выделен штамм Methanococcus halophilus, обладающий самым высоким среди природных штаммов уровнем продукции – 16 мг на 1 г биомассы.

В значительных количествах В12 синтезируют анаэробные бактерии р. Clostridium, что особенно эффективно для технологии.

Известны активные продуценты В12 среди Pseudomonas. У P. denitricans получен мутант, дающий на оптимизированной среде до 59 мг/л. Штамм запатентован фирмой «Merck» для промышленного получения В12. Из культуральной жидкости витамин В12 выделяют экстракцией органическими растворителями, ионообменной хроматографией с послецующим осаждением из фракций в виде труднорастворимых соединений. В процессе получения витамина В12 с помощью пропионовокислых бактерий применяют дорогостоящую антикоррозийную аппаратуру, сложные и дорогие питательные среды.

Рибофлавин микробиологического производства используется исключительно как кормовая добавка в животноводстве. Основным продуцентом кормового рибофлавина является Eremothecium ashbyi, который культивируют на кукурузной или соевой муке с минеральными добавками. Культивирование ведут до появления спор. Его лучшие продуценты, полученные с помощью мутаций и ступенчатого отбора продуцируют до 600 мг/л продукта. Затем культуральную жидкость выпаривают и используют в виде порошковой добавки к кормам в животноводстве.

Эргостерин – исходный продукт производства жирорастворимого витамина D2. Эргостерин является также основным стерином дрожжей, поэтому данные микроорганизмы – основной источник для селекционных работ. Так, Saccharomyces carlbergensis дает до 4,3 мг/л, S. ellipsoideus – 1,5 мг/л, Rhodotorula glutinis – 1 мг/л, Candida utilis – 0,5 мг/л продукта.

Каротиноиды – обширная группа природных пигментов, которые синтезируют хемо и фототрофами: прокариотами, мицелиальными грибами и дрожжами, водорослями и высшими растениями.

Каротиноиды, синтезируемые микроорганизмами, существуют в клетке в свободной форме, а также в виде гликозидов, в виде эфиров жирных кислот и как каротинобелковые комплексы. Ценность этих соединений для млекопитающих заключается в том, что это источник витамина А.

До настоящего времени не созданы истинные продуценты каротиноидов, а каротиноиды микроорганизмов выделяют из микроорганизмов преимущественно путем экстракции.

Витамин В3 (пантотеновая кислота). Способ получения – тонкий органический синтез и микробиологический синтез с использованием иммобилизованных клеток бактерий, актиномицетов (основной метод). Витамин РР. Используется биотехнологический метод, метод экстракции из микроорганизмов, обычно из пекарских дрожжей с добавлением предшественников. Используется штамм – Brevibacterium ammoniagenes. Аскорбиновая кислота. Здесь применяется в основном химический синтез илишь одна стадия осуществляется биотехнологическим способом с применением уксусно-кислых бактерий, проводящих реакцию трансформации d -сорбита в L-сорбозу. Для получения сорбозы культуру продуцента Gluconobacter oxydans выращивают в ферментерах периодического действия с мешалкой, барботером, усиленной аэрацией в течение 20-40 часов. Выход сорбозы достигает 98% от начального сорбита.

Витамин РР – в его производстве используется биотехнологический метод, применяя способ экстракции из микроорганизмов, обычно это пекарские дрожжи. В качестве штамма используется Brevibacterium ammoniagenes.

students-library.com


 
 
Пример видео 3
Пример видео 2
Пример видео 6
Пример видео 1
Пример видео 5
Пример видео 4
Как нас найти

Администрация муниципального образования «Городское поселение – г.Осташков»

Адрес: 172735 Тверская обл., г.Осташков, пер.Советский, д.З
+7 (48235) 56-817
Электронная почта: [email protected]
Закрыть
Сообщение об ошибке
Отправьте нам сообщение. Мы исправим ошибку в кратчайшие сроки.
Расположение ошибки: .

Текст ошибки:
Комментарий или отзыв о сайте:
Отправить captcha
Введите код: *