Грибы относятся к бесхлорофилловым растениям. Они обитают в почвах, воде, на растениях и животных, на очистных сооружениях. Клетки грибов подобны клеткам других растений, но не содержат пластид. У грибов основным систематическим признаком служат органы плодоношения и споры. В водной среде грибы редко образуют органы плодоношения и потому распознавание водных грибов часто затруднительно. Грибы, встречающиеся в пресных водоёмах, имеют мицелий (грибницу). Он может быть одноклеточным и многоклеточным. Одноклеточные грибы имеют мицелий, представляющий собой одну очень длинную клетку, не разделённую перегородками. В этой клетке содержится большое количество ядер. Такой мицелий называется многоядерным.
У грибов наблюдается многообразие способов размножения. Они могут размножаться простым делением, почкованием, с помощью спор и половым путём, с помощью обрывков гиф.
Плесневые грибы (Aspergillum и Penicillium) имеют многоклеточный мицелий, размножаются спорами. Грибы, развивающиеся в виде одноклеточных элементов, называются дрожжами (рисунок). Они размножаются чаще всего почкованием, реже делением и с помощью спор. Резко разграничивать дрожжи от плесени нельзя. Некоторые из них могут расти и в виде дрожжей и в виде нитей с образованием мицелия. Это зависит от внешних условий среды. Например, низкие температуры благоприятствуют образованию плесени, тогда как некоторые вещества, входящие в состав питательных сред, и кислород способствуют развитию дрожжеподобных клеток. Существуют различные вещества, например, сивушные масла, ионы кобальта, камфора и др., способствующие переходу из дрожжеподобной формы в мицеллярную. Дрожжи и плесени отличаются от простейших наличием толстой твёрдой клеточной оболочки. У дрожжей оболочка состоит из целлюлозы, а у плесеней – из хитина и родственных ему веществ. Кроме этого, они отличаются способом питания, отсутствием подвижности, вегетативным способом роста – рост происходит непрерывно независимо от размеров, - и характерной морфологией. Дрожжи и плесени обладают высокой ферментативной активностью, что используется в промышленности и санитарной технике. Некоторые виды дрожжей вызывают брожение с выходом ценных продуктов, например спиртов, ацетона, а другие разрушают органические вещества растительных и животных остатков. Плесени используются для получения антибиотиков.
www.chem-astu.ru
Следует отличать многоклеточность и колониальность. У колониальных организмов отсутствуют настоящие дифференцированные клетки, а следовательно, и разделение тела на ткани. Граница между многоклеточностью и колониальностью нечёткая. Например, вольвокс часто относят к колониальным организмам, хотя в его «колониях» есть чёткое деление клеток на генеративные и соматические. Выделение смертной «сомы» А. А. Захваткин считал важным признаком многоклеточности вольвокса. Кроме дифференцировки клеток, для многоклеточных характерен и более высокий уровень интеграции, чем для колониальных форм. Однако некоторые ученые считают многоклеточность более развитой формой колониальности[источник не указан 1806 дней].
Наиболее древними многоклеточными, известными в настоящее время, являются червеобразные организмы длиной до 12 см, обнаруженные в 2010 году в отложениях формации Francevillian B в Габоне. Их возраст оценивается в 2,1 млрд лет[1]. Возраст около 1,9 млрд лет имеют организмы Grypania spiralis, предположительно эукариотические водоросли длиной до 10 мм, обнаруженные в отложениях железистой формации Негауни в шахте Эмпайр (англ.)русск. недалеко от города Маркетт (англ.)русск., штат Мичиган[2].
В целом же многоклеточность возникала в разных эволюционных линиях органического мира несколько десятков раз. По не вполне понятным причинам многоклеточность более характерна для эукариот, хотя среди прокариот тоже встречаются зачатки многоклеточности. Так, у некоторых нитчатых цианобактерий в нитях встречаются три типа четко дифференцированных клеток, а при движении нити демонстрируют высокий уровень целостности. Многоклеточные плодовые тела характерны для миксобактерий.
По современным данным основные предпосылки для появление многоклеточности, а именно:
возникли задолго до появления многоклеточности, но выполняли у одноклеточных другие функции. «Молекулярные заклёпки» предположительно применялись одноклеточными хищниками для захвата и удержания жертвы, а сигнальные вещества — для привлечения потенциальных жертв и отпугивания хищников[3].
Причиной появления многоклеточных организмов считают эволюционную целесообразность укрупнения размеров особей, которая позволяет более успешно противостоять хищникам, а также поглощать и переваривать более крупную жертву. Однако условия для массового появления многоклеточных появились только в Эдиакарском периоде, когда уровень кислорода в атмосфере достиг величины, позволяющей покрывать увеличивающиеся энергетические расходы на поддержание многоклеточности[4].
Развитие многих многоклеточных организмов начинается с одной клетки (например, зиготы у животных или споры в случае гаметофитов высших растений). В этом случае большинство клеток многоклеточного организма имеют одинаковый геном. При вегетативном размножении, когда организм развивается из многоклеточного фрагмента материнского организма, как правило, также происходит естественное клонирование.
У некоторых примитивных многоклеточных (например, клеточных слизевиков и миксобактерий) возникновение многоклеточных стадий жизненного цикла происходит принципиально иначе — клетки, часто имеющие сильно различающиеся генотипы, объединяются в единый организм.
Шестьсот миллионов лет назад, в позднем докембрии (венде), начался расцвет многоклеточных организмов. Удивляет разнообразие вендской фауны: разные типы и классы животных появляются как бы вдруг, но число родов и видов небольшое. В венде возник биосферный механизм взаимосвязи одноклеточных и многоклеточных организмов — первые стали продуктом питания для вторых. Обильный в холодных водах планктон, использующий световую энергию, стал пищей для плавающих и донных микроорганизмов, а также для многоклеточных животных. Постепенное потепление и рост содержания кислорода привели к тому, что эукариоты, включая многоклеточных животных, стали заселять и карбонатный пояс планеты, вытесняя цианобактерии. Начало палеозойской эры принесло две загадки: исчезновение вендской фауны и «кембрийский взрыв» — появление скелетных форм.
Эволюция жизни в фанерозое (последние 545 млн лет земной истории) — процесс усложнения организации многоклеточных форм в растительном и животном мире.
Не существует чёткой грани между одноклеточными и многоклеточными организмами. Многие одноклеточные обладают средствами для создания многоклеточных колоний, в то же время отдельные клетки некоторых многоклеточных организмов обладают способностью к самостоятельному существованию.
Губки — наиболее простые из многоклеточных существ. Значительную часть тела губки составляют опорные структуры на основе силикатов или карбоната кальция, переплетённые волокнами коллагена.
В начале XX века Генри ван Питерс Уилсон поставил классический эксперимент, во время которого он простирал тело губки через мелкое сито, разделяя его на отдельные клетки. Помещённые в стеклянную чашки и предоставленные самим себе эти амёбовидные клетки начинали группироваться в бесформенные комки красноватого цвета, которые затем обретали структуру и превращались в организм губки. Восстановление организма губки происходило и в том случае, если чашку помещалась только часть из первоначального количества клеток[5].
Хоанофлагелляты — одноклеточные организмы, напоминающие по форме бокалы со жгутиками в середине. По своей анатомии они настолько сходны с клетками внутренней поверхности губок, что некоторое время их считали выродившимися губками, утратившими остальные типы клеток. Ошибочность этого взгляда установлена только после расшифровки геномов обоих организмов. У хоанофлагеллят имеются элементы молекулярных каскадов, обеспечивающие у многоклеточных взаимодействие между клетками, а также несколько типов молекулярных заклёпок и белки, подобные коллагену и протеогликану[6].
Подробное изучение хоанофлагеллят предприняла Николь Кинг из Калифорнийского университета в Беркли.
У многих бактерий, например, стрептококков, обнаружены белки, сходные с коллагеном и протеогликаном, однако не образующие канаты и пласты, как у животных. В стенках бактерий обнаружены сахара, входящие в состав протеогликанового комплекса, образующего хрящи.
В экспериментах по эволюции многоклеточности, они были сделаны в 1902 году проведённых в 2012 году исследователями Университета Миннесоты под руководством Уильяма Рэтклиффа и Майкла Трависано, в качестве модельного объекта служили пекарские дрожжи. Эти одноклеточные грибы размножаются почкованием; по достижении материнской клеткой определённых размеров, от неё отделяется более мелкая дочерняя клетка и становится самостоятельным организмом. Дочерние клетки могут также слипаться друг с другом, образуя кластеры. Исследователи проводили искусственный отбор клеток, входящих в наиболее крупные кластеры. Критерием отбора была скорость оседания кластеров на дно резервуара. Прошедшие фильтр отбора кластеры вновь культивировались, и среди снова отбирались наиболее крупные[7].
Со временем дрожжевые кластеры начинали вести себя как единые организмы: после ювенильной стадии, когда происходил рост клеток, следовала стадия размножения, в процессе которой кластер делился на большую и малую части. При этом клетки, находившиеся на границе, погибали, позволяя разойтись родительскому и дочернему кластерам[7].
Эксперимент занял 60 дней. В итоге получились индивидуальные скопления дрожжевых клеток, которые жили и умирали как единый организм[7].
Сами исследователи не считают эксперимент чистым, так как дрожжи в прошлом имели многоклеточных предков, от которых могли унаследовать некоторые механизмы многоклеточности[7].
В 2013 году группа исследователей Университета Миннесоты под руководством Уильяма Рэтклиффа, ранее известная эволюционными экспериментами с дрожжами[7], провела аналогичные опыты с одноклеточными водорослями Chlamydomonas reinhardtii[8][9]. 10 культур этих организмов культивировали в течение 50 поколений, время от времени центрифугируя их и отбирая наиболее крупные кластеры. Через 50 поколений в одной из культур развились многоклеточные скопления с синхронизацией жизненных циклов отдельных клеток. Оставаясь вместе в течение нескольких часов, кластеры затем расходились на отдельные клетки, которые, оставаясь внутри общей слизистой оболочки, начинали делиться и образовывать новые кластеры.
В отличие от дрожжей, хламидомонады никогда не имели многоклеточных предков и не могли унаследовать от них механизмы многоклеточности, тем не менее, в результате искусственного отбора в течение нескольких десятков поколений, примитивная многоклеточность появляется и у них. Однако в отличие от дрожжевых кластеров, которые в процессе почкования оставались единым организмом, кластеры хламидомонад при размножении разделяются на отдельные клетки. Это свидетельствует о том, что механизмы многоклеточности могли возникать независимо в различных группах одноклеточных и варьировать от случая к случаю[8].
В настоящее время нет информации о создании по-настоящему многоклеточных искусственных организмов, однако проводятся эксперименты по созданию искусственных колоний одноклеточных.
В 2009 году Равилем Фахруллиным из Казанского (Приволжского) государственного университета (Татарстан, Россия) и Весселином Пауновым из Университета Халла (Йоркшир, Великобритания) были получены новые биологические структуры, получившие название «целлосомы» (англ. cellosome) и представлявшие собой искусственно созданные колонии одноклеточных. Слой дрожжевых клеток наносили на кристаллы арагонита и кальцита, используя в качестве связующего полимерные электролиты, затем кристаллы растворяли кислотой и получали полые замкнутые целлосомы, сохранявшие форму использованного шаблона. В полученных целлосомах дрожжевые клетки сохраняли активность и форму шаблона[1].
ru-wiki.org
Многокле́точный органи́зм — внесистематическая категория живых организмов, тело которых состоит из многих клеток, большая часть которых (кроме стволовых клеток, таких как, например, клетки камбия у растений) дифференцирована, то есть они различаются по строению и выполняемым функциям.
Следует отличать многоклеточность и колониальность. У колониальных организмов отсутствуют настоящие дифференцированные клетки, а следовательно, и разделение тела на ткани. Граница между многоклеточностью и колониальностью нечёткая. Например, вольвокс часто относят к колониальным организмам, хотя в его «колониях» есть чёткое деление клеток на генеративные и соматические. Выделение смертной «сомы» А. А. Захваткин считал важным признаком многоклеточности вольвокса. Кроме дифференцировки клеток, для многоклеточных характерен и более высокий уровень интеграции, чем для колониальных форм. Однако некоторые ученые считают многоклеточность более развитой формой колониальности[источник не указан 1810 дней].
Наиболее древними многоклеточными, известными в настоящее время, являются червеобразные организмы длиной до 12 см, обнаруженные в 2010 году в отложениях формации Francevillian B в Габоне. Их возраст оценивается в 2,1 млрд лет[1]. Возраст около 1,9 млрд лет имеют организмы Grypania spiralis, предположительно эукариотические водоросли длиной до 10 мм, обнаруженные в отложениях железистой формации Негауни в шахте Эмпайр (англ.)русск. недалеко от города Маркетт (англ.)русск., штат Мичиган[2].
В целом же многоклеточность возникала в разных эволюционных линиях органического мира несколько десятков раз. По не вполне понятным причинам многоклеточность более характерна для эукариот, хотя среди прокариот тоже встречаются зачатки многоклеточности. Так, у некоторых нитчатых цианобактерий в нитях встречаются три типа четко дифференцированных клеток, а при движении нити демонстрируют высокий уровень целостности. Многоклеточные плодовые тела характерны для миксобактерий.
По современным данным основные предпосылки для появление многоклеточности, а именно:
возникли задолго до появления многоклеточности, но выполняли у одноклеточных другие функции. «Молекулярные заклёпки» предположительно применялись одноклеточными хищниками для захвата и удержания жертвы, а сигнальные вещества — для привлечения потенциальных жертв и отпугивания хищников[3].
Причиной появления многоклеточных организмов считают эволюционную целесообразность укрупнения размеров особей, которая позволяет более успешно противостоять хищникам, а также поглощать и переваривать более крупную жертву. Однако условия для массового появления многоклеточных появились только в Эдиакарском периоде, когда уровень кислорода в атмосфере достиг величины, позволяющей покрывать увеличивающиеся энергетические расходы на поддержание многоклеточности[4].
Развитие многих многоклеточных организмов начинается с одной клетки (например, зиготы у животных или споры в случае гаметофитов высших растений). В этом случае большинство клеток многоклеточного организма имеют одинаковый геном. При вегетативном размножении, когда организм развивается из многоклеточного фрагмента материнского организма, как правило, также происходит естественное клонирование.
У некоторых примитивных многоклеточных (например, клеточных слизевиков и миксобактерий) возникновение многоклеточных стадий жизненного цикла происходит принципиально иначе — клетки, часто имеющие сильно различающиеся генотипы, объединяются в единый организм.
Шестьсот миллионов лет назад, в позднем докембрии (венде), начался расцвет многоклеточных организмов. Удивляет разнообразие вендской фауны: разные типы и классы животных появляются как бы вдруг, но число родов и видов небольшое. В венде возник биосферный механизм взаимосвязи одноклеточных и многоклеточных организмов — первые стали продуктом питания для вторых. Обильный в холодных водах планктон, использующий световую энергию, стал пищей для плавающих и донных микроорганизмов, а также для многоклеточных животных. Постепенное потепление и рост содержания кислорода привели к тому, что эукариоты, включая многоклеточных животных, стали заселять и карбонатный пояс планеты, вытесняя цианобактерии. Начало палеозойской эры принесло две загадки: исчезновение вендской фауны и «кембрийский взрыв» — появление скелетных форм.
Эволюция жизни в фанерозое (последние 545 млн лет земной истории) — процесс усложнения организации многоклеточных форм в растительном и животном мире.
Не существует чёткой грани между одноклеточными и многоклеточными организмами. Многие одноклеточные обладают средствами для создания многоклеточных колоний, в то же время отдельные клетки некоторых многоклеточных организмов обладают способностью к самостоятельному существованию.
Губки — наиболее простые из многоклеточных существ. Значительную часть тела губки составляют опорные структуры на основе силикатов или карбоната кальция, переплетённые волокнами коллагена.
В начале XX века Генри ван Питерс Уилсон поставил классический эксперимент, во время которого он простирал тело губки через мелкое сито, разделяя его на отдельные клетки. Помещённые в стеклянную чашки и предоставленные самим себе эти амёбовидные клетки начинали группироваться в бесформенные комки красноватого цвета, которые затем обретали структуру и превращались в организм губки. Восстановление организма губки происходило и в том случае, если чашку помещалась только часть из первоначального количества клеток[5].
Хоанофлагелляты — одноклеточные организмы, напоминающие по форме бокалы со жгутиками в середине. По своей анатомии они настолько сходны с клетками внутренней поверхности губок, что некоторое время их считали выродившимися губками, утратившими остальные типы клеток. Ошибочность этого взгляда установлена только после расшифровки геномов обоих организмов. У хоанофлагеллят имеются элементы молекулярных каскадов, обеспечивающие у многоклеточных взаимодействие между клетками, а также несколько типов молекулярных заклёпок и белки, подобные коллагену и протеогликану[6].
Подробное изучение хоанофлагеллят предприняла Николь Кинг из Калифорнийского университета в Беркли.
У многих бактерий, например, стрептококков, обнаружены белки, сходные с коллагеном и протеогликаном, однако не образующие канаты и пласты, как у животных. В стенках бактерий обнаружены сахара, входящие в состав протеогликанового комплекса, образующего хрящи.
В экспериментах по эволюции многоклеточности, они были сделаны в 1902 году проведённых в 2012 году исследователями Университета Миннесоты под руководством Уильяма Рэтклиффа и Майкла Трависано, в качестве модельного объекта служили пекарские дрожжи. Эти одноклеточные грибы размножаются почкованием; по достижении материнской клеткой определённых размеров, от неё отделяется более мелкая дочерняя клетка и становится самостоятельным организмом. Дочерние клетки могут также слипаться друг с другом, образуя кластеры. Исследователи проводили искусственный отбор клеток, входящих в наиболее крупные кластеры. Критерием отбора была скорость оседания кластеров на дно резервуара. Прошедшие фильтр отбора кластеры вновь культивировались, и среди снова отбирались наиболее крупные[7].
Со временем дрожжевые кластеры начинали вести себя как единые организмы: после ювенильной стадии, когда происходил рост клеток, следовала стадия размножения, в процессе которой кластер делился на большую и малую части. При этом клетки, находившиеся на границе, погибали, позволяя разойтись родительскому и дочернему кластерам[7].
Эксперимент занял 60 дней. В итоге получились индивидуальные скопления дрожжевых клеток, которые жили и умирали как единый организм[7].
Сами исследователи не считают эксперимент чистым, так как дрожжи в прошлом имели многоклеточных предков, от которых могли унаследовать некоторые механизмы многоклеточности[7].
В 2013 году группа исследователей Университета Миннесоты под руководством Уильяма Рэтклиффа, ранее известная эволюционными экспериментами с дрожжами[7], провела аналогичные опыты с одноклеточными водорослями Chlamydomonas reinhardtii[8][9]. 10 культур этих организмов культивировали в течение 50 поколений, время от времени центрифугируя их и отбирая наиболее крупные кластеры. Через 50 поколений в одной из культур развились многоклеточные скопления с синхронизацией жизненных циклов отдельных клеток. Оставаясь вместе в течение нескольких часов, кластеры затем расходились на отдельные клетки, которые, оставаясь внутри общей слизистой оболочки, начинали делиться и образовывать новые кластеры.
В отличие от дрожжей, хламидомонады никогда не имели многоклеточных предков и не могли унаследовать от них механизмы многоклеточности, тем не менее, в результате искусственного отбора в течение нескольких десятков поколений, примитивная многоклеточность появляется и у них. Однако в отличие от дрожжевых кластеров, которые в процессе почкования оставались единым организмом, кластеры хламидомонад при размножении разделяются на отдельные клетки. Это свидетельствует о том, что механизмы многоклеточности могли возникать независимо в различных группах одноклеточных и варьировать от случая к случаю[8].
В настоящее время нет информации о создании по-настоящему многоклеточных искусственных организмов, однако проводятся эксперименты по созданию искусственных колоний одноклеточных.
В 2009 году Равилем Фахруллиным из Казанского (Приволжского) государственного университета (Татарстан, Россия) и Весселином Пауновым из Университета Халла (Йоркшир, Великобритания) были получены новые биологические структуры, получившие название «целлосомы» (англ. cellosome) и представлявшие собой искусственно созданные колонии одноклеточных. Слой дрожжевых клеток наносили на кристаллы арагонита и кальцита, используя в качестве связующего полимерные электролиты, затем кристаллы растворяли кислотой и получали полые замкнутые целлосомы, сохранявшие форму использованного шаблона. В полученных целлосомах дрожжевые клетки сохраняли активность и форму шаблона[1].
www.gpedia.com
Ученым удалось в лаборатории смоделировать возникновение многоклеточных живых организмов из одноклеточных. Теперь они думают, что этот ключевой этап эволюции в природе произошел достаточно быстро.
Уильям Ратклифф (William Ratcliff) и его коллеги из университета штата Миннесота взяли одноклеточные грибы – хлебопекарные дрожжи (Saccharomyces cerevisiae) и поместили их в колбы с питательной средой, которая постоянно взбалтывалась на специальном устройстве. Десять популяций дрожжей росли в таких условиях в течение двух месяцев, а затем исследователи посмотрели, что из этого получилось.
Оказалось, что во всех колбах большинство клеток дрожжей сгруппировалось в сообщества (наподобие снежинок), состоящие из нескольких сотен клеток. Такие «снежинки» стали преобладать над отдельными клетками. Биологи объясняют, что сообщества в данных условиях получают адаптивное преимущества перед отдельными клетками, так как они тяжелее и способны быстрее перемещаться в жидкости, получая больше кислорода.
Интересно, что клетки в сообществах приобрели некоторые черты, характерные для клеток многоклеточного организма. Они держались вместе, и «снежинки» не распадались после клеточного деления, а образовывали дочерние «веточки». Когда исследователи изменили режим взбалтывания, «снежинки» стали меняться, но делали это, как единые организмы, не распадаясь на клетки.
Посмотрев, как ведут себя отдельные клетки в сообществах, биологи увидели, что некоторые клетки погибали, и это можно было сравнить с запрограммированной клеточной смертью – апоптозом. Погибающие клетки служили точками отрыва дочерних «снежинок» от материнских. Таким способом «снежинки» регулировали размер своего потомства.
Как считают авторы эксперимента, они продемонстрировали, что переход от одноклеточности к многоклеточности - важнейшая ступень эволюции, мог произойти много быстрее, чем считалось ранее. О своей работе они написали в журнале Proceedings of the National Academy of Sciences.
www.infox.ru
В 1665 году английский ученый Роберт Гук, рассматривая через увеличительный прибор тонкий срез коры пробкового дуба, заметил большое количество ячеек. Эти ячейки он назвал клетками. Позднее установили, что клетки пробки мертвые и Р. Гук видел только их оболочки. В живых растительных клетках под оболочкой содержится вязкое вещество — цитоплазма, а в нем находятся более плотное ядро, вакуоли — пузырьки с клеточным соком и др.
Срез арбуза при рассматривании в ручную лупуКлетки мякоти арбуза под микроскопом
Клетки, словно кирпичики, слагают все органы растений. Они различны по форме, величине и значению в организме. Некоторые из них можно увидеть простым глазом. Если разломить кусок мякоти спелого плода арбуза или помидора, то будут видны мельчайшие пузырьки. Это и есть клетки. Вареные клубни картофеля становятся рассыпчатыми — их клетки отделяются друг от друга.
Из клеток состоят также все другие организмы — грибы, животные, человек.
В 1675 году голландец Антони ван Левенгук усовершенствовал микроскоп. Рассматривая с его помощью капли воды, взятой из бочки, которая долго стояла на дворе, он обнаружил мельчайших животных. Они были настолько мелки, что могли свободно проходить через ушко тонкой швейной иглы.
Одноклеточные организмы
В последующие годы ученые разных стран открыли множество видов мельчайших организмов. Однако только через 200 лет после их открытия было установлено, что тело большинства таких организмов состоит из одной клетки, способной реагировать на различные внешние раздражители (свет, температуру, химические вещества, механические воздействия), питаться, дышать, расти и развиваться, размножаться. После этого все живые организмы были разделены на две группы — одноклеточные и многоклеточные.
Одноклеточные организмы различны по величине, строению, движению, питанию и другим признакам. К ним относятся все виды бактерий, различные виды грибов, растений и животных. Одноклеточные грибы — это, например, дрожжи; одноклеточные растения — водоросли хлорелла, хламидомонада; одноклеточные животные — амеба, инфузория-туфелька, трубач.
Большинство же видов организмов — многоклеточные. Их тела состоят из огромного количества клеток, различающихся по строению и значению в организме.
У большинства многоклеточных организмов клетки, сходные по строению и выполняемым функциям, образуют ткани. Например, плотно сомкнутые клетки, расположенные на границе с внешней средой, образуют покровные ткани. Такие ткани выполняют в основном защитные функции. Разные ткани в многоклеточном организме образуют разные органы — части тела, имеющие определенное строение и выполняющие свойственные им функции. Ткани у растений, например, образуют такие органы, как корень, лист, а у животных — мышцы, сердце, легкие, печень, почки.
blgy.ru
Пример видео 3 | Пример видео 2 | Пример видео 6 | Пример видео 1 | Пример видео 5 | Пример видео 4 |
Администрация муниципального образования «Городское поселение – г.Осташков»