Справочник химика 21. Мука это раствор или твердое вещество


Твердые растворы

Количество просмотров публикации Твердые растворы - 2223

Твердыми растворами называют однородные кристаллические фазы перемен­ного состава.

Твердые растворы определœенной структуры представляют из себяодну кристаллическую фазу, состав которой в определœенных пре­делах (в так называемой области гомогенности) может изменяться без появления новых фаз. Различают несколько типов твердых растворов (рис. 10). Два типа -твердые растворы заме­щения (твердые растворы I рода) и твердые растворы внедрения- (твердые растворы II рода) образуются при внед­рении в решетку (ʼʼрастворенииʼʼ в решетке) какого-либо кристал­лического соединœения атомов или ионов другого соединœения. Причем при образовании твердых растворов замещения ʼʼсобственныеʼʼ атомы основного вещества (матрицы) замещаются на внедряющие­ся атомы, а при образовании твердых растворов внедрения эти атомы располагаются в междоузлиях решетки матричного веще­ства. Третий тип твердых растворов не связан с внедрением в ре­шетку посторонних атомов или ионов, а обусловлен отклонением в определœенных пределах состава данного соединœения от его стехиометрического состава. Такие твердые растворы называются дефектами нестехиометрии (для некоторых из них иногда используют название твердые растворы вычитания).

-

Рис. 10. Типы твердых растворов: а — замещения; б — внедрения; в — вычитания

Твердые растворы не являются каким-то исключительным явле­нием. Наоборот, это весьма характерное состояние реальных ве­ществ, поскольку не существует веществ абсолютно нерастворимых друг в друге в твердом состоянии. Точно так же практически не су­ществует соединœений с координационными решетками, состав ко­торых всœегда точно соответствовал бы стехиометрическому составу.

Твердые растворы замещения. В случае если атомы или ионы одного ве­щества, внедряясь в решетку другого вещества, замещают его соб­ственные атомы или ионы в узлах решетки, возникают твердые рас­творы замещения.

Твердыми растворами замещения называются такие растворы, которые об­разуются в результате статистического замещения атомов или ионов в структуре какого-либо кристаллического вещества (растворители или матрицы) атомами или ионами другого (растворенного) вещества, занимающими в результате этого регулярные узлы кристаллической решетки.

Твердые растворы замещения (рис. 10, а)часто называют так­же смешанными кристаллами и изоморфными смесями, а процесс образования твердых растворов замещения называют изоморфным замещением.

При образовании твердых растворов замещения в принципе за­мещать друг друга могут как катионы, так и анионы.

Некоторые вещества могут образовывать твердые растворы весьма легко, к примеру при их совместной кристаллизации из рас­творов. При этом чаще всœего, к примеру в силикатных системах, для образования твердых растворов требуется значительная энергия активации, в связи с этим их возникновение связано с различными терми­ческими процессами (нагреванием до высокой температуры, плав­лением с последующей кристаллизацией, гидротермальными про­цессами).

Количество посторонних атомов или ионов, внедряющихся в структуру основного вещества, должна быть различным. Некоторые вещества могут смешиваться между собой в широких пределах, вплоть до полного замещения собственных атомов на атомы другого вещества. В этом случае говорят о непрерывном ряде твердых растворов, полной смешиваемости или совер­шенном изоморфизме. К таким веществам, к примеру, от­носятся 2МgO·SiO2 и 2FеО-SiO2, образующие непрерывные твер­дые растворы - оливины. Причем в структуре 2FеО·SiO2 катионы желœеза бывают полностью замещены на катионы магния и, напротив - в структуре 2МgO·SiO2 катионы магния на катионы же­леза (замещения типа Мg2+↔Fе2+). При этом гораздо чаще замещения коли­чественно могут происходить только в определœенных пределах, вне которого твердые растворы уже не образуются. В этом случае говорят об ограниченном ряде твер д ы х растворов, ограниченной смешиваемости или несовершенном изо­морфизме (при очень малой растворимости образование твер­дых растворов называют эндокриптией — маскировкой).

Способность атомов или ионов входить в структуру другого ве­щества определяется, с одной стороны, индивидуальными свойст­вами атомов или ионов (размер, заряд, электронное строение) и, с другой стороны, особенностями кристаллической структуры ве­ществ, образующих твердые растворы.

Твердые растворы внедрения.Атомы или ионы одного вещества могут не замещать атомы или ионы другого, а располагаться в про­межутках между ними (рис. 10, б). В этом случае возникают твер­дые растворы внедрения.

Твердыми растворами внедрения называются такие растворы, которые обра­зуются в результате внедрения атомов или ионов одного вещества в свободные промежутки (междоузлия) кристаллической решетки другого вещества - раство­рителя.

Типичными представителями подобных твердых растворов явля­ются так называемые фазы внедрения - соединœения, образующие­ся при внедрении в междоузлия плотноупакованных решеток переходных металлов атомов неметаллов, к примеру водорода (гидри­ды), азота (нитриды), углерода (карбиды) и т. д. Конкретным примером фазы внедрения является сталь - твердый раствор внед­рения углерода в решетке желœеза. Фазы внедрения переменного состава часто имеют значительные области гомогенности.

Следует отметить, что твердые растворы внедрения в отличие от твердых растворов замещения бывают только ограниченны­ми, поскольку обычно при определœенной концентрации растворя­ющегося компонента напряжения в решетке за счёт внедряющихся атомов становятся столь значительными, что существование устой­чивого твердого раствора мало вероятно.

Многие свойства фаз внедрения, такие, к примеру, как высокая твердость и тугоплавкость, превышающие эти характеристики у металлов, обусловлены прочной ковалентной связью атомов метал­ла и неметалла с участием -электронов. Наличие металлической межатомной связи в подобных фазах объясняет их металлический блеск, высокую электрическую проводимость, способность некото­рых из них вблизи температуры абсолютного нуля переходить в сверхпроводящее состояние.

Дефекты нестехиометрии.Сегодня установлено, что практически всœе химические соединœения в твердом состоянии с ко­ординационными (атомными, ионными или металлическими) ре­шетками имеют переменный состав, т. е. обнаруживают в какой-либо степени отклонения от стехиометрического состава, выража­емого формулой этого соединœения. Область составов, лежащих внутри граничных значений нарушения стехиометрического соста­ва, принято называть областью гомогенности или областью нестехиометрии. Постоянный и неизменный химический со­став, соответствующий стехиометрической формуле, могут иметь только соединœения с молекулярными решетками.

Отклонения от стехиометрии являются следствием дефектов ре­шетки (дефектов нестехиометрии), которые могут проявляться в виде избытка (по сравнению со стехиометрическим) катионов вследствие анионных вакансий (КС1, ТhO2, СеO2, РbО, ТiO и т. д.) или в результате присутствия катионов в междоузлиях решетки (ZnО, СdO и т. д.), избытка анионов из-за наличия в решетке катионных вакансий (FеО, NiO, FеS, ТiO и т. д.) или присутствия анионов в междоузлиях (UO2 и т. д.). Возможны и комбинации указанных видов дефектов в одном и том же соединœении.

Поскольку нестехиометрические соединœения в пределах обла­сти гомогенности представляют из себяодну фазу переменного со­става, их можно квалифицировать как твердые растворы. В случае если на­рушения стехиометрии вызваны наличием в решетке катионных или анионных вакансий, т. е. при недостатке атомов в соответствующей катионной или анионной подрешетке, то такие твердые растворы иногда называют твердыми растворами вычитания (рис. 10, е), в случае если же эти нарушения вызваны избытком катионов или анионов в междоузлиях, то такие твердые растворы можно рассматривать как твердые растворы внедрения собственных ка­тионов или анионов данного соединœения в его кристаллическую решетку.

Возникновение нестехиометрических соединœений является след­ствием термодинамически неизбежного обмена веществом данной кристаллической фазы с окружающей средой, т. е. другими фазами (газообразными, жидкими или твердыми). Степень отклонения от стехиометрии зависит прежде всœего от физико-химической природы самого соединœения и для разных соединœений различна. Иногда об­ласть гомогенности (область нестехиометрии) бывает весьма уз­кой и ее обнаружение ограничивается недостаточной чувствительностью применяемых методов исследования. Такие соединœения можно условно рассматривать как соединœения, не имеющие обла­сти гомогенности, т. е. соединœения постоянного состава. Их иногда называют линœейными фазами, поскольку на диаграмме со­стояния состав этих соединœений отображается вертикальной лини­ей - ординатой соответствующего состава.

referatwork.ru

РАСТВОРЫ - это... Что такое РАСТВОРЫ?

Единицы концентраций, используемые в научной литературе, основаны на таких понятиях, как моль и эквивалент, поскольку все химические расчеты и уравнения химических реакций должны основываться на том, что вещества вступают в реакции между собой в определенных соотношениях. Например, 1 экв. NaCl, равный 58,5 г, взаимодействует с 1 экв. AgNO3, равным 170 г. Ясно, что растворы, содержащие по 1 экв. этих веществ, имеют совершенно разные процентные концентрации. Молярность (M или моль/л) - число молей растворенного веществ, содержащихся в 1 л раствора. Моляльность (м) - число молей растворенного вещества, содержащихся в 1000 г растворителя. Нормальность (н.) - число химических эквивалентов растворенного вещества, содержащихся в 1 л раствора. Мольная доля (безразмерная величина) - число молей данного компонента, отнесенное к общему числу молей растворенного вещества и растворителя. (Мольный процент - мольная доля, умноженная на 100.) Наиболее распространенная единица - молярность, но при ее расчете следует учитывать некоторые неоднозначности. Например, чтобы получить 1M раствор данного вещества, растворяют в заведомо небольшом количестве воды точную его навеску, равную мол. массе в граммах, и доводят объем раствора до 1 л. Количество воды, необходимое для приготовления данного раствора, может слегка различаться в зависимости от температуры и давления. Поэтому два одномолярных раствора, приготовленных в разных условиях, в действительности имеют не совсем одинаковые концентрации. Моляльность вычисляется исходя из определенной массы растворителя (1000 г), которая не зависит от температуры и давления. В лабораторной практике гораздо удобнее отмеривать определенные объемы жидкостей (для этого существуют бюретки, пипетки, мерные колбы), чем взвешивать их, поэтому в научной литературе концентрации чаще выражают в молях, а моляльность обычно применяют только при особо точных измерениях. Нормальность используется для упрощения расчетов. Как мы уже говорили, вещества взаимодействуют друг с другом в количествах, соответствующих их эквивалентам. Приготовив растворы разных веществ одинаковой нормальности и взяв равные их объемы, мы можем быть уверены в том, что они содержат одно и то же количество эквивалентов. В тех случаях, когда трудно (или нет необходимости) делать различие между растворителем и растворенным веществом, концентрацию измеряют в мольных долях. Мольные доли, как и моляльности, не зависят от температуры и давления. Зная плотности растворенного вещества и раствора, можно пересчитать одну концентрацию в другую: молярность в моляльность, мольную долю и наоборот. Для разбавленных растворов данного растворенного вещества и растворителя эти три величины пропорциональны друг другу. Растворимость данного вещества - это его способность образовывать растворы с другими веществами. Количественно растворимость газа, жидкости или твердого тела измеряется концентрацией их насыщенного раствора при данной температуре. Это важная характеристика вещества, помогающая понять его природу, а также влиять на ход реакций, в которых это вещество участвует.Газы. В отсутствие химического взаимодействия газы смешиваются друг с другом в любых пропорциях, и в этом случае говорить о насыщении нет смысла. Однако при растворении газа в жидкости существует некая предельная концентрация, зависящая от давления и температуры. Растворимость газов в некоторых жидкостях коррелирует с их способностью к сжижению. Наиболее легко сжижаемые газы, например Nh4, HCl, SO2, более растворимы, чем трудно сжижаемые газы, например O2, h3 и He. При наличии химического взаимодействия между растворителем и газом (например, между водой и Nh4 или HCl) растворимость увеличивается. Растворимость данного газа изменяется с природой растворителя, однако порядок, в котором располагаются газы в соответствии с увеличением их растворимости, остается примерно одинаковым для разных растворителей. Процесс растворения подчиняется принципу Ле Шателье (1884): если на систему, находящуюся в равновесии, оказывается какое-либо воздействие, то в результате протекающих в ней процессов равновесие сместится в таком направлении, что оказанное воздействие уменьшится. Растворение газов в жидкостях обычно сопровождается выделением тепла. При этом, в соответствии с принципом Ле Шателье, растворимость газов уменьшается. Это уменьшение тем заметнее, чем выше растворимость газов: такие газы имеют и большую теплоту растворения. "Мягкий" вкус кипяченой или дистиллированной воды объясняется отсутствием в ней воздуха, поскольку его растворимость при высокой температуре весьма мала. С ростом давления растворимость газов увеличивается. Согласно закону Генри (1803), масса газа, который может раствориться в данном объеме жидкости при постоянной температуре, пропорциональна его давлению. Это свойство используется для приготовления газированных напитков. Углекислый газ растворяют в жидкости при давлении 3-4 атм.; в этих условиях в данном объеме может раствориться в 3-4 раза больше газа (по массе), чем при 1 атм. Когда емкость с такой жидкостью открывают, давление в ней падает, и часть растворенного газа выделяется в виде пузырьков. Аналогичный эффект наблюдается при открывании бутылки шампанского или выходе на поверхность подземных вод, насыщенных на большой глубине углекислым газом. При растворении в одной жидкости смеси газов растворимость каждого из них остается такой же, как и в отсутствие других компонентов при таком же давлении, как в случае смеси (закон Дальтона).Жидкости. Взаимная растворимость двух жидкостей определяется тем, насколько сходно строение их молекул ("подобное растворяется в подобном"). Для неполярных жидкостей, например углеводородов, характерны слабые межмолекулярные взаимодействия, поэтому молекулы одной жидкости легко проникают между молекулами другой, т.е. жидкости хорошо смешиваются. Напротив, полярные и неполярные жидкости, например вода и углеводороды, смешиваются друг с другом плохо. Каждой молекуле воды нужно сначала вырваться из окружения других таких же молекул, сильно притягивающими ее к себе, и проникнуть между молекулами углеводорода, притягивающими ее слабо. И наоборот, молекулы углеводорода, чтобы раствориться в воде, должны протиснуться между молекулами воды, преодолевая их сильное взаимное притяжение, а для этого нужна энергия. При повышении температуры кинетическая энергия молекул возрастает, межмолекулярное взаимодействие ослабевает и растворимость воды и углеводородов увеличивается. При значительном повышении температуры можно добиться их полной взаимной растворимости. Такую температуру называют верхней критической температурой растворения (ВКТР). В некоторых случаях взаимная растворимость двух частично смешивающихся жидкостей увеличивается при понижении температуры. Этот эффект наблюдается в том случае, когда при смешивании выделяется тепло, обычно в результате химической реакции. При значительном понижении температуры, но не ниже точки замерзания, можно достичь нижней критической температуры растворения (НКТР). Можно предположить, что все системы, имеющие НКТР, имеют и ВКТР (обратное не обязательно). Однако в большинстве случаев одна из смешивающихся жидкостей кипит при температуре ниже ВКТР. У системы никотин-вода НКТР равна 61° С, а ВКТР составляет 208° C. В интервале 61-208° C эти жидкости ограниченно растворимы, а вне этого интервала обладают полной взаимной растворимостью.Твердые вещества. Все твердые вещества проявляют ограниченную растворимость в жидкостях. Их насыщенные растворы имеют при данной температуре определенный состав, который зависит от природы растворенного вещества и растворителя. Так, растворимость хлорида натрия в воде в несколько миллионов раз выше растворимости нафталина в воде, а при растворении их в бензоле наблюдается обратная картина. Этот пример иллюстрирует общее правило, согласно которому твердое вещество легко растворяется в жидкости, имеющей с ним сходные химические и физические свойства, но не растворяется в жидкости с противоположными свойствами. Соли обычно легко растворяются в воде и хуже - в других полярных растворителях, например в спирте и жидком аммиаке. Однако растворимость солей тоже существенно различается: например, нитрат аммония обладает в миллионы раз большей растворимостью в воде, чем хлорид серебра. Растворение твердых веществ в жидкостях обычно сопровождается поглощением тепла, и в соответствии с принципом Ле Шателье их растворимость должна увеличиваться при нагревании. Этот эффект можно использовать для очистки веществ методом перекристаллизации. Для этого их растворяют при высокой температуре до получения насыщенного раствора, затем раствор охлаждают и после выпадения растворенного вещества в осадок профильтровывают. Есть вещества (например, гидроксид, сульфат и ацетат кальция), растворимость которых в воде с ростом температуры уменьшается. Твердые вещества, как и жидкости, тоже могут растворяться друг в друге полностью, образуя гомогенную смесь - истинный твердый раствор, аналогичный жидкому раствору. Частично растворимые друг в друге вещества образуют два равновесных сопряженных твердых раствора, составы которых изменяются с температурой.Коэффициент распределения. Если к равновесной системе двух несмешивающихся или частично смешивающихся жидкостей добавить раствор какого-либо вещества, то оно распределяется между жидкостями в определенной пропорции, не зависящей от общего количества вещества, в отсутствие химических взаимодействий в системе. Это правило получило название закона распределения, а отношение концентраций растворенного вещества в жидкостях - коэффициента распределения. Коэффициент распределения примерно равен отношению растворимостей данного вещества в двух жидкостях, т.е. вещество распределяется между жидкостями соответственно его растворимостям. Это свойство используется для экстракции данного вещества из его раствора в одном растворителе с помощью другого растворителя. Еще одним примером его применения является процесс экстракции серебра из руд, в состав которых оно часто входит вместе со свинцом. Для этого в расплавленную руду добавляют цинк, который не смешивается со свинцом. Серебро распределяется между расплавленным свинцом и цинком, преимущественно в верхнем слое последнего. Этот слой собирают и отделяют серебро дистилляцией цинка.Произведение растворимости (ПР). Между избытком (осадком) твердого вещества MxBy и его насыщенным раствором устанавливается динамическое равновесие, описываемое уравнением
Константа равновесия этой реакции равна и называется произведением растворимости. Она постоянна при данных температуре и давлении и является величиной, на основании которой рассчитывают растворимость осадка и изменяют ее. Если в раствор добавить соединение, диссоциирующее на ионы, одноименные с ионами малорастворимой соли, то в соответствии с выражением для ПР растворимость соли уменьшается. При добавлении же соединения, реагирующего с одним из ионов, она, напротив, увеличится. О некоторых свойствах растворов ионных соединений см. также ЭЛЕКТРОЛИТЫ.ЛИТЕРАТУРА Шахпаронов М. И. Введение в молекулярную теорию растворов. М., 1956 Реми И. Курс неорганической химии, тт. 1-2. М., 1963, 1966

Энциклопедия Кольера. — Открытое общество. 2000.

  • АВОГАДРО ЧИСЛО
  • ВЬЕТНАМСКАЯ ВОЙНА

Смотреть что такое "РАСТВОРЫ" в других словарях:

  • РАСТВОРЫ — системы, состоящие из молекул, атомов и(или) ионов неск. разл. типов, при этом числа разл. частиц не находятся в к. л. определённых стехиометрич. соотношениях друг с другом (что отделяет Р. от хим. соединений). К Р. обычно относят такие… …   Физическая энциклопедия

  • РАСТВОРЫ — РАСТВОРЫ, однородные системы (главным образом жидкости), состоящие из двух или более веществ (компонентов). Обычно преобладающий по концентрации компонент называется растворителем, остальные растворенными веществами. Раствор, в котором… …   Современная энциклопедия

  • РАСТВОРЫ — однородные смеси переменного состава двух или большего числа веществ (компонентов). Могут быть газовыми (напр., воздух), жидкими и твердыми (напр., многие сплавы). В жидких растворах компонент, находящийся в избытке, называется растворителем, все …   Большой Энциклопедический словарь

  • растворы — Жидкая лекарственная форма, полученная растворением жидких, твердых или газообразных веществ в соответствующем растворителе. Растворы используют для внутреннего и наружного применения, а также для инъекций. [МУ 64 01 001 2002] Тематики… …   Справочник технического переводчика

  • РАСТВОРЫ — РАСТВОРЫ, оптически и химически однородные жидкости, состоящие из двух (или большего числа) различного рода молекул. Если каждый из компонентов является жидкостью и оба они находятся в приблизительно одинаковом количестве, так что нет оснований… …   Большая медицинская энциклопедия

  • растворы — – однородные (гомогенные) системы переменного состава, состоящие из двух (растворенное вещество и растворитель) компонентов и более. Общая химия : учебник / А. В. Жолнин [1] …   Химические термины

  • РАСТВОРЫ — (1) однородные (гомогенные) по внешнему виду системы переменного состава, состоящие обычно из двух млн. нескольких веществ (компонентов), равномерно распределённых друг в друге в виде отдельных атомов, ионов или молекул. Любой Р. состоит из (см.) …   Большая политехническая энциклопедия

  • Растворы — [solutions] макроскопические однородное смеси > 2 веществ (компонентов), состав которых при данных внешних условиях может непрерывно меняться в некоторых пределах. Количественное соотношение компонентов в растворах определяет их концентрацией.… …   Энциклопедический словарь по металлургии

  • Растворы — Растворение соли в воде Раствор гомогенная (однородная) смесь, образованная не менее чем двумя компонентами, один из которых называется растворителем, а другой растворимым веществом, это также система переменного состава, находящаяся в состоянии… …   Википедия

  • РАСТВОРЫ — гомогенные системы, состоящие из двух или более компонентов, состав к рых в определенных пределах может непрерывно изменяться. От мех. смесей Р. отличаются своей однородностью и возрастанием энтропии системы при смешении компонентов. По… …   Химическая энциклопедия

dic.academic.ru

Растворы

Растворы — это однородные системы переменного состава, состоящие из двух или более веществ. Известны газообразные, жидкие и твердые растворы. К газообразным растворам относятся смеси любых газов, к твердым — многие сплавы металлов, стекла. Особое значение в природе и технике имеют жидкие растворы, образуемые растворением газов, жидкостей и твердых веществ в воде и других жидкостях. При растворении газов и твердых веществ в жидкости последнюю принято называть растворителем. При растворении жидкостей друг в друге растворителем считают ту из них, которой в растворе больше. Количество растворенного вещества, содержащееся в определенном количестве раствора или растворителя, называют концентрацией (см.) раствора. Растворы, в котором данное вещество больше не растворяется и, следовательно, избыток растворяемого вещества находится в равновесии с раствором, называют насыщенным. Концентрация ненасыщенного раствора меньше, а пересыщенного больше, чем насыщенного раствора. Пересыщенные растворы обычно образуются при медленном охлаждении горячих насыщенных растворов. Способность вещества растворяться в том или ином количестве в данном растворителе при образовании насыщенного раствора называют растворимостью вещества. Растворимость газов в жидкостях принято выражать коэффициентом поглощения (абсорбции), который указывает, сколько объемов газа (при t° 0° и давлении в 1 атм.) растворяется в одном объеме жидкости при данной температуре и парциальном давлении газа, равном 1 атм. Растворимость жидкостей и твердых веществ в жидкостях обычно выражают числом граммов растворяемого вещества на 100 г растворителя или на 100 мл насыщенного раствора. Растворимость зависит от природы растворяемого вещества и растворителя. С повышением температуры растворимость газов уменьшается, а жидкостей и твердых веществ в большинстве случаев повышается. Растворимость газов прямо пропорциональна давлению, при котором растворяется газ.

Растворы играют исключительную роль в природе и технике. Воды Мирового океана и атмосфера представляют собой растворы. С растворами связаны все физиологические и биохимические процессы, так как внутренней средой любого организма являются водные растворы различного рода веществ. Многие лекарственные средства также являются растворами.

См. также Буферные растворы, Диффузия, Изотонические растворы, Коллоиды, Электролиты.

Растворы (истинные растворы) — однородные (гомогенные) системы переменного состава, состоящие из двух или более веществ. От механических смесей растворы отличаются однородностью, от химических соединений — переменным составом.

Растворы играют исключительно важную роль в природе, технике и обыденной жизни. Подавляющее большинство известных химических реакций протекает в растворах. Воды мирового океана и атмосфера представляют собой растворы. Физиологические жидкости также являются растворами. Почти все лекарственные вещества оказывают свойственное им действие на организм в растворенном состоянии.

В зависимости от агрегатного состояния различают газообразные, жидкие и твердые растворы. К газообразным относят смеси любых газов и паров, в том числе и воздух. К твердым — многие сплавы, стекло, некоторые минералы и горные породы. Особое значение для изучения жизненных процессов в норме и патологии имеют жидкие растворы, образуемые растворением в жидкостях газов, жидкостей или твердых веществ.

При растворении в жидкости газов или твердых веществ жидкость принято называть растворителем, а газы или твердые вещества, находящиеся в растворах,— растворенными веществами.

В случае растворения одной жидкости в другой растворителем считают ту из них, которая находится в растворах в относительно большем количестве.

Насыщенным раствором называют раствор, находящийся в равновесии с избытком растворяемого вещества, ненасыщенным — раствор, концентрация которого меньше, чем насыщенного, а пересыщенным — раствор, концентрация которого больше, чем насыщенного.

В зависимости от величины молекулярного веса растворенного вещества жидкие растворы подразделяют на растворы низкомолекулярных веществ, например водные растворы обычных кислот, щелочей и солей, и на растворы высокомолекулярных соединений, к которым относятся растворы белков, полисахаридов, нуклеиновых кислот в воде, каучука в бензоле, нитроклетчатки в спиртоэфирной смеси и др. Растворы высокомолекулярных соединений обладают рядом характерных свойств, присущих типичным коллоидным растворам. (см. коллоиды).

Процесс растворения сопровождается выделением или поглощением тепла.

Растворимость данного вещества в жидкости измеряется концентрацией (см.) насыщенного его раствора в этой жидкости.

Установлен ряд качественных правил растворимости веществ в жидкостях. Полярные вещества хорошо растворимы в полярных растворителях (вода, спирт, ацетон и др.) и плохо в неполярных жидкостях (бензол, четыреххлористый углерод, сероуглерод и т. д.). Наоборот, неполярные вещества хорошо растворимы в неполярных растворителях и плохо — в полярных. Последнее правило кладется в основу некоторых теорий клеточной проницаемости. При этом имеется в виду, что оболочка многих клеток состоит из неполярных веществ — липидов.

Растворимость газов в жидкостях выражают коэффициентом поглощения, который указывает, сколько объемов данного газа, приведенных к нормальным условиям (t° 0° и давление 1 атм.), растворяется в одном объеме жидкости при данной температуре и парциальном давлении газа, равном 1 атм.

Растворимость газов в жидкостях изменяется в широких пределах в зависимости от природы жидкости и газа, а также от давления и температуры. Так, например, при t° 18° коэффициент поглощения азота равен 0,01698; кислорода — 0,03220; хлористого водорода — 427,9; аммиака — 748,8. Кислород примерно вдвое более растворим в воде, чем азот, поэтому в воздухе, растворенном в воде, содержание кислорода значительно больше, чем в атмосфере (34,1% по объему при t° 18° вместо 21,2% в атмосфере). Это имеет большое биологическое значение для организмов, обитающих в воде.

Зависимость растворимости газа от давления выражается законом Генри (см. Абсорбция).

При растворении смеси газов растворимость каждого газа согласно закону Дальтона пропорциональна его парциальному давлению над раствором.

С повышением температуры растворимость газа в жидкости уменьшается. Этим свойством газа пользуются для удаления из жидкостей растворенных в них газов.

Для этого раствор кипятят в течение некоторого времени, в результате чего газ удаляется из раствора вместе с пузырьками пара.

Указанная зависимость растворимости газов от температуры имеет большое биологическое значение для организмов, обитающих в воде.

С повышением температуры дыхание организмов и потребность в кислороде возрастают, тогда как концентрация его в воде падает, вследствие чего при нагревании может наступить гибель организмов от удушья из-за недостатка кислорода. При насыщении воды кислородом организмы становятся менее чувствительными к повышению температуры.

При растворении в воде солей и многих неэлектролитов, склонных к гидратации, растворимость в ней газов, как правило, значительно уменьшается в соответствии с законом И. М. Сеченова.

Растворимость жидкостей в жидкостях колеблется в широких пределах. Известны жидкости, неограниченно растворяющиеся друг в друге, например спирт и вода, серная кислота и вода, и др. Существуют жидкости, ограниченно растворимые друг в друге, например эфир растворим в воде в небольших количествах. При добавлении больших количеств образуются два слоя. Верхний слой представляет собой насыщенный раствор воды в эфире и содержит при t° 18° 1,2% воды и 98,8% эфира; нижний слой, являющийся насыщенным раствором эфира в воде, содержит 93,5% воды и 6,5% эфира.

Известны жидкости, практически нерастворимые друг в друге, например ртуть и вода, бензол и вода. С увеличением температуры взаимная растворимость ограниченно растворимых жидкостей в большинстве случаев возрастает и часто при достижении определенной для каждой пары жидкостей температуры, называемой критической, жидкости полностью смешиваются одна с другой. Например, фенол и вода при t° 68,8° (критическая температура) и выше растворяются друг в друге в любых пропорциях; ниже критической температуры они лишь ограниченно растворимы друг в друге.

При изменении давления взаимная растворимость жидкостей меняется незначительно.

Растворимость твердых веществ в жидкостях обычно выражают в граммах твердого безводного вещества, приходящихся на 100 г растворителя в насыщенном растворе или на 100 мл насыщенного раствора. В зависимости от природы твердого вещества и растворителя растворимость твердых веществ в жидкостях колеблется в очень широких пределах. Так, например, при 25° в 100 г воды растворяется 257 г AgNO3 и лишь 3·10-20 г HgS.

Растворимость твердых веществ зависит от степени их измельчения. Мелкие кристаллики, или зерна, размеры которых меньше примерно 0,1 мм, более растворимы чем крупные. Различные по содержанию кристаллизационной воды кристаллогидраты одного и того же химического соединения обладают неодинаковой растворимостью. Например, растворимость Na2SO4·10Н2O в воде меньше растворимости Na2SO4.

Растворимость твердых веществ в жидкостях почти не зависит от давления, но, как правило, сильно изменяется с температурой.

Обычно растворимость твердых веществ возрастает с повышением температуры, но известны вещества, как например Са(ОН)2, Са(С2Н3O2)2 и др., растворимость которых с повышением температуры понижается.

См. также Буферные растворы, Диффузия, Изотонические растворы, Электролиты.

www.medical-enc.ru

Общие понятия •,,

Экстракцией называют метод извлечения растворителями из смеси каких-либо веществ того или другого компонента.

В основе этого метода лежат закон распределения вещества, между двумя несмешивающимися жидкостями (если экстрагируют вещество из раствора в какой-нибудь жидкости) и различная растворимость отдельных веществ в данном растворителе (если вещество извлекают из смеси с другими веществами) .

Большинство веществ (как жидких, так и твердых) растворяется в нескольких растворителях. Если данное вещество растворено в каком-либо растворителе и к этому раствору прибавить другой растворитель, не смешивающийся с первым, то часть вещества перейдет в этот растворитель, образуя два слоя несмешивающихся жидкостей, в которых будет содержаться данное вещество. При этом распределение вещества между двумя растворителями будет вполне определенным для каждого отдельного случая *.

Например, уксусная кислота очень хорошо растворяется в воде и в бензоле. Бензол же в воде практически нерастворим. Поэтому, если к водному раствору уксусной кислоты добавить бензол, то уксусная кислота распределится между водой и бензолом. Повторяя операцию несколько раз, можно извлечь из воды почти всю уксусную кислоту.

* Отношение концентраций растворенного вещества в обеих Ъкидких фазах называется коэффициентом распределения.

Если же взять такой случай, когда растворители смешиваются между собой, а данное вещество растворяется только в одном из них, то при добавлении в раствор другого растворителя вещество выпадает.

Например, скипидар растворяется в спирте; если же в спиртовый раствор его добавить воду, то он выпадет в виде тонкой эмульсии. Другой пример: воск хорошо растворяется на холоду в хлороформе, но плохо в холодном этиловом спирте. Поэтому, если к хлороформному раствору воска добавить некоторое количество спирта, то воск выделится из раствора в виде хлопьев.

Если же имеется смесь двух или нескольких веществ и нужно выделить одно из них, то почти всегда можно подобрать такой растворитель, который растворяет только нужное вещество и почти не растворяет других.

Одним из важнейших растворителей является вода, в которой растворяется очень большое число различных неорганических и органических веществ.

Экстракция органическими растворителями применяется не только для извлечения органических веществ. Очень многие неорганические соли, главным образом га-логениды и нитраты, также растворяются в органических растворителях и при определенных условиях могут быть извлечены из водных растворов. На этом, в частности, основаны некоторые способы очистки различных неорганических солей с целью получения чистых металлов.

Кроме экстрагирования при помощи летучих органических растворителей или воды, извлечение нужного вещества в отдельных случаях можно проводить и нелетучими органическими веществами. Таким путем, например, можно извлекать некоторые составные части из растительной ткани, если после перемалывания последней полученную муку или настаивать, или взбалтывать, или перемешивать с жидкими маслами. Операцию можно проводить как на холоду, так и при нагревании.

При экстрагировании большое значение имеет температура, особенно в тех случаях, когда экстрагируют водой.

В некоторых случаях приходится проводить так называемую реэкстракцию. Например, органическим растворителем можно извлечь из смеси какое-либо вещество, хорошо растворяющееся в воде. Вместо отгонки органического растворителя полученный экстракт можно обработать водой и все извлеченное вещество перейдет в водный раствор, очищенный же от примеси органический растворитель может быть снова использован для экстракции.

В зависимости от того, в каком виде находится экстрагируемое вещество, приемы экстракции и конструкция применяемых для этой цели приборов несколько изменяются.

Для удобства рассмотрения процесса экстракции можно наметить два случая: экстрагирование твердых веществ (система «твердое — жидкость») и экстрагирование жидкостей (система «жидкость — жидкость»).

Кроме того, в зависимости от применяемых растворителей различают экстракцию:

а) водой или водными растворами;

б) органическими растворителями;

в) расплавами.

К оглавлению

 

см. также

  1. Общие понятия
  2. Экстрагирование твердых веществ
  3. Холодное, экстрагирование
  4. Горячее экстрагирование
  5. Экстрагирование жидкостей
  6. Автоматическое экстрагирование из непрерывного потока
  7. Экстрагирование расплавами твердых органических веществ

 

 

www.himikatus.ru

Измельчение твердых веществ - Справочник химика 21

    Применяемые приборы и способы измельчения. В химических лабораториях для измельчения твердых веществ чаще всего применяют различные ступки металлические, фарфоровые, агатовые, а также из других твердых материалов. Каждая ступка состоит из двух основных частей собственно ступки, в которую помещают измельчаемое вещество, и пестика. [c.97]     Для измельчения твердых веществ иногда применяют различные механические дробилки, шаровые и стержневые мельницы и так называемые вибромельницы, с помощью которых можно измельчить твердое вещество очень мелко. [c.98]

    Измельчение твердых веществ и смешивание как твердых, так и жидких веществ в практике химических лабораторий проводится часто. Все твердые материалы, поступающие в лабораторию для анализа, обязательно измельчают. Перед приготовлением растворов твердых веществ 1и также полезно предварительно измельчить. Для получения однородной смеси различных твердых веществ необходимо, чтобы смешиваемые твердые вещества были измельчены как можно тщательнее. [c.97]

    Для переведения твердых веществ в порошкообразное состояние, т. е. для увеличения их поверхности, применяют ступки с пестиками, имеющими шишкообразное утолщение. Чаще всего в лабораториях пользуются фарфоровыми ступками. Твердые материалы после грубого измельчения обычно растирают в агатовой ступке или в ступке из спекшегося корунда. Для измельчения твердых веществ применяют также стальную ступку (рис. Е.7), называемую алмазной . Она представляет собой толстостенный стальной цилиндр с навинчивающейся нижней крышкой, в кото- [c.485]

    При внесении в мерную колбу порошкообразных веществ нужно пользоваться только сухими воронками, желательно—с коротким концом. Пересыпаемое вещество должно быть сухим. Высыпав в воронку измельченное твердое вещество, легкими ударами по воронке добиваются того, чтобы все взятое вещество оказалось в колбе. Только после этого воронку можно обмывать водой. [c.47]

    Мацерация (или при нагревании дигерирование). Измельченное твердое вещество размешивают с растворителем и затем фильтруют или декантируют. Для более полного извлечения операцию повторяют несколько раз, используя небольшие порции свежего растворителя. [c.35]

    Ступки (рис. 56) применяют для измельчения твердых веществ. [c.50]

    Для смешивания твердых веществ применяют также шаровые и стержневые мельницы и другие механические приспособления. Как правило, все приборы, используемые для измельчения твердых веществ, могут быть применены и для смешивания их. Жидкости смешивают вручную, механическим путем или при помощи [c.100]

    Механические (измельчение твердых веществ и их транспортирование).  [c.19]

    Какие виды ступок применяют для измельчения твердых веществ  [c.100]

    Сыпучим матерпалом является продукция многих производств, в том числе и таких крупнотоннажных, как производства удобрений, строительных материалов, пластмасс, моющих средств, соды, красителей. Сыпучие материалы получают измельчением твердых веществ, выделением из суспензий, сжиганием газов, кристаллизацией, добычей из естественных карьеров, шахт. [c.147]

    Пневматический транспорт заключается в переносе измельченного твердого вещества воздушным потоком (рис. П-66). Обычно этот поток движется вертикально вверх. В этом случае избыточное давление Ар, которым должен обладать воздух, равно сумме  [c.164]

    Кипящий слой образуется при пропускании восходящего потока газа через слой измельченного твердого вещества, В определенном интервале скоростей газового потока состояние системы газ -твердое ветцество напоминает слой кипящей жидкости. Частицы твердого веи ,ества перемещаются в -азовом потоке весьма интенсивно, что обеспечивает высокую текучесть кипящего слоя. [c.412]

    Для измельчения твердых веществ используют фарфоровые или агатовые ступки с пестиками. При работе с большими количествами веществ применяют механические шаровые мельницы. [c.32]

    Для гетерогенных реакций, когда одно из реагирующих веществ является, например, твердым, а второе газообразным, скорость реакции будет зависеть от степени измельчения твердого вещества и давления газообразного вещества. Но так как степень измельчения твердого вещества и его концентрация в процессе реакции не изменяются, то в уравнение ЗДМ входит только давление газообразного вещества. Например, уравнение ЗДМ для реакции горения угля [c.114]

    Такого вывода сделать нельзя. Ес и реакция термодинамически возможна слева направо, то на ее пути могут сушествовать препятствия в виде большой энергии активации, большой вязкости жидкости и твердых реагентов, недостаточного измельчения твердых веществ и т. д. Для преодоления этого необходимо применить соответствующий катализатор, подогревание и т. д. [c.224]

    Фарфоровые и агатовые ступки с пестиками применяют для измельчения твердых веществ. Они изготовляются разного диаметра. Внутренняя поверхность ступки и рабочая часть пестика не покрыты глазурью, что способствует лучшему измельчению вещества. Для тонкого измельчения очень твердых веществ применяют агатовые ступки. Грубое измельчение делают в стальных ступках. Фарфоровыми шпателями и ложками набирают сухие реактивы из банок. [c.307]

    Экстрагирование (экстракция) — это довольно распространенный метод извлечения растворенного вещества путем взбалтывания с другим несмешивающимся растворителем, в котором данное вещество растворяется гораздо лучше. Процесс экстракции ускоряется при увеличении поверхности раздела между фазами, что достигается перемешиванием, измельчением твердых веществ и Другими приемами. [c.247]

    Абсорберы с механическим перемешиванием используют сравнительно редко. Они находят применение при небольших отношениях газ жидкость, а также, если в поглотителе присутствует мелко измельченное твердое вещество во взвешенном состоянии. [c.602]

    При51енение кипящего или псевдоожиженного слоя мелко-измельченного твердого вещества приобретает в современной нефтепереработке огромное практическое значение. [c.338]

    Дробле,ние и размол представляют собой процессы механического измельчения твердых веществ. В результате измельчения значительно увеличивается поверхность обрабатываемого материала. [c.49]

    В лаборатории используется фарфоровая посуда, которая более прочная, чем стеклянная, не боится сильного нагревания и резкого перепада температур. Прй5.ца, ассортимент фарфоровой посуды менее многочислен, чем стеклянной, поскольку она не прозрачна, более тяжелая, труднообрабатываема. Из фарфора чаще всего изготавливают стаканы, чашки для выпаривания, ступки для измельчения твердых веществ, ложки, шпатели. [c.30]

    Иля измельчения твердых веществ используют фарфоровые или ага- т( 1 Ы ступки с пестиками. При работе С большими количествами веществ (,[c.32]

    Для малорастворимых твердых веществ можно получить отражательный спектр. При интенсивном измельчении твердого вещества уменьшается часть светового потока, отражающаяся от его поверхности, а большая часть падающего света проникает и глубь вещества. Эта доля частично поглощается, а частично, после м-ногократного отражения снова диффузно выделяется через поверхность вещества наружу. При таком внутреннем отражении ослабляются участки спектра, связанные с абсорбцией света молекулами. Для дальнейшего уменьшения поверхностного отражения порошкообразное вещество можно смешать с веществом, индифферентным в используемой спектральной области (белый стандарт), и получить известную аналогию с раствором вещества. Отражательная спектроскопия пригодна также для получения спектров поглощения малорастворимых веществ. Этот метод применяют в основном при исследовании состава красок и строения неорганических твердых соединений. Абсорбция света окрашенными катионами зависит от различных факторов от координационного числа, симметрии молекулы и межатомных расстояний в кристаллической решетке соединения. По изменению абсорбции можно сделать выводы об изменениях, происходящих в решетке соединения при включении посторонних ионов. [c.355]

    К соляной кислоте прилили лакмус, затем прибавили рассчитанное количество тщательно измельченного твердого вещества А и хорошо перемешали. Образовалось новое белое вещество, нерастворимое ни в воде, пи в кислотах, а лакмус приобрел фиолетовую окраску. Что за вещество А 1-1апншнте уравнение реакции его с соляной кислотой. [c.154]

    Колонка в жидкожидкостной хроматографии состоит из слоя тонко измельченного твердого вещества (носителя), обычно инертного, на котором сорбируется неподвижная распределяющая фаза. Подвижная фаза протекает через колонку и таким образом на очень большой поверхности вступает в контакт с неподвижной фазой. При этом происходит перераспределение компонентов между подвижным и неподвижным растворителями вследствие различного сродства компонентов к растворителям. Различие в распределении компонентов между двумя фазами, обусловленное различным их сродством к подвижному растворителю, определяет неодинаковую скорость их движения в колонке, что и приводит к разделению. [c.62]

    Получение коллоидных растворов (золей) путем диспергирования осуществляется механическим измельчением твердого вещества в ступке или при помощи коллоидной /мельницы в присутствии стабилизатора, а также пептиза-цией. Пептизацией называется процесс получения золей из студней или рыхлых осадков при действии на них некоторых веществ, способных хорошо адсорбироваться на поверхности коллоидных частиц и таким путем сообщать им способность перехода в золь. При пептизации происходит не изменение степени дисперсности частиц, образующих студень или осадок, а только их разъединение. [c.208]

chem21.info


Смотрите также

 
 
Пример видео 3
Пример видео 2
Пример видео 6
Пример видео 1
Пример видео 5
Пример видео 4
Как нас найти

Администрация муниципального образования «Городское поселение – г.Осташков»

Адрес: 172735 Тверская обл., г.Осташков, пер.Советский, д.З
+7 (48235) 56-817
Электронная почта: [email protected]
Закрыть
Сообщение об ошибке
Отправьте нам сообщение. Мы исправим ошибку в кратчайшие сроки.
Расположение ошибки: .

Текст ошибки:
Комментарий или отзыв о сайте:
Отправить captcha
Введите код: *