Количество просмотров публикации Твердые растворы - 2223
Твердыми растворами называют однородные кристаллические фазы переменного состава.
Твердые растворы определенной структуры представляют из себяодну кристаллическую фазу, состав которой в определенных пределах (в так называемой области гомогенности) может изменяться без появления новых фаз. Различают несколько типов твердых растворов (рис. 10). Два типа -твердые растворы замещения (твердые растворы I рода) и твердые растворы внедрения- (твердые растворы II рода) образуются при внедрении в решетку (ʼʼрастворенииʼʼ в решетке) какого-либо кристаллического соединения атомов или ионов другого соединения. Причем при образовании твердых растворов замещения ʼʼсобственныеʼʼ атомы основного вещества (матрицы) замещаются на внедряющиеся атомы, а при образовании твердых растворов внедрения эти атомы располагаются в междоузлиях решетки матричного вещества. Третий тип твердых растворов не связан с внедрением в решетку посторонних атомов или ионов, а обусловлен отклонением в определенных пределах состава данного соединения от его стехиометрического состава. Такие твердые растворы называются дефектами нестехиометрии (для некоторых из них иногда используют название твердые растворы вычитания).
-
Рис. 10. Типы твердых растворов: а — замещения; б — внедрения; в — вычитания
Твердые растворы не являются каким-то исключительным явлением. Наоборот, это весьма характерное состояние реальных веществ, поскольку не существует веществ абсолютно нерастворимых друг в друге в твердом состоянии. Точно так же практически не существует соединений с координационными решетками, состав которых всегда точно соответствовал бы стехиометрическому составу.
Твердые растворы замещения. В случае если атомы или ионы одного вещества, внедряясь в решетку другого вещества, замещают его собственные атомы или ионы в узлах решетки, возникают твердые растворы замещения.
Твердыми растворами замещения называются такие растворы, которые образуются в результате статистического замещения атомов или ионов в структуре какого-либо кристаллического вещества (растворители или матрицы) атомами или ионами другого (растворенного) вещества, занимающими в результате этого регулярные узлы кристаллической решетки.
Твердые растворы замещения (рис. 10, а)часто называют также смешанными кристаллами и изоморфными смесями, а процесс образования твердых растворов замещения называют изоморфным замещением.
При образовании твердых растворов замещения в принципе замещать друг друга могут как катионы, так и анионы.
Некоторые вещества могут образовывать твердые растворы весьма легко, к примеру при их совместной кристаллизации из растворов. При этом чаще всего, к примеру в силикатных системах, для образования твердых растворов требуется значительная энергия активации, в связи с этим их возникновение связано с различными термическими процессами (нагреванием до высокой температуры, плавлением с последующей кристаллизацией, гидротермальными процессами).
Количество посторонних атомов или ионов, внедряющихся в структуру основного вещества, должна быть различным. Некоторые вещества могут смешиваться между собой в широких пределах, вплоть до полного замещения собственных атомов на атомы другого вещества. В этом случае говорят о непрерывном ряде твердых растворов, полной смешиваемости или совершенном изоморфизме. К таким веществам, к примеру, относятся 2МgO·SiO2 и 2FеО-SiO2, образующие непрерывные твердые растворы - оливины. Причем в структуре 2FеО·SiO2 катионы железа бывают полностью замещены на катионы магния и, напротив - в структуре 2МgO·SiO2 катионы магния на катионы железа (замещения типа Мg2+↔Fе2+). При этом гораздо чаще замещения количественно могут происходить только в определенных пределах, вне которого твердые растворы уже не образуются. В этом случае говорят об ограниченном ряде твер д ы х растворов, ограниченной смешиваемости или несовершенном изоморфизме (при очень малой растворимости образование твердых растворов называют эндокриптией — маскировкой).
Способность атомов или ионов входить в структуру другого вещества определяется, с одной стороны, индивидуальными свойствами атомов или ионов (размер, заряд, электронное строение) и, с другой стороны, особенностями кристаллической структуры веществ, образующих твердые растворы.
Твердые растворы внедрения.Атомы или ионы одного вещества могут не замещать атомы или ионы другого, а располагаться в промежутках между ними (рис. 10, б). В этом случае возникают твердые растворы внедрения.
Твердыми растворами внедрения называются такие растворы, которые образуются в результате внедрения атомов или ионов одного вещества в свободные промежутки (междоузлия) кристаллической решетки другого вещества - растворителя.
Типичными представителями подобных твердых растворов являются так называемые фазы внедрения - соединения, образующиеся при внедрении в междоузлия плотноупакованных решеток переходных металлов атомов неметаллов, к примеру водорода (гидриды), азота (нитриды), углерода (карбиды) и т. д. Конкретным примером фазы внедрения является сталь - твердый раствор внедрения углерода в решетке железа. Фазы внедрения переменного состава часто имеют значительные области гомогенности.
Следует отметить, что твердые растворы внедрения в отличие от твердых растворов замещения бывают только ограниченными, поскольку обычно при определенной концентрации растворяющегося компонента напряжения в решетке за счёт внедряющихся атомов становятся столь значительными, что существование устойчивого твердого раствора мало вероятно.
Многие свойства фаз внедрения, такие, к примеру, как высокая твердость и тугоплавкость, превышающие эти характеристики у металлов, обусловлены прочной ковалентной связью атомов металла и неметалла с участием -электронов. Наличие металлической межатомной связи в подобных фазах объясняет их металлический блеск, высокую электрическую проводимость, способность некоторых из них вблизи температуры абсолютного нуля переходить в сверхпроводящее состояние.
Дефекты нестехиометрии.Сегодня установлено, что практически все химические соединения в твердом состоянии с координационными (атомными, ионными или металлическими) решетками имеют переменный состав, т. е. обнаруживают в какой-либо степени отклонения от стехиометрического состава, выражаемого формулой этого соединения. Область составов, лежащих внутри граничных значений нарушения стехиометрического состава, принято называть областью гомогенности или областью нестехиометрии. Постоянный и неизменный химический состав, соответствующий стехиометрической формуле, могут иметь только соединения с молекулярными решетками.
Отклонения от стехиометрии являются следствием дефектов решетки (дефектов нестехиометрии), которые могут проявляться в виде избытка (по сравнению со стехиометрическим) катионов вследствие анионных вакансий (КС1, ТhO2, СеO2, РbО, ТiO и т. д.) или в результате присутствия катионов в междоузлиях решетки (ZnО, СdO и т. д.), избытка анионов из-за наличия в решетке катионных вакансий (FеО, NiO, FеS, ТiO и т. д.) или присутствия анионов в междоузлиях (UO2 и т. д.). Возможны и комбинации указанных видов дефектов в одном и том же соединении.
Поскольку нестехиометрические соединения в пределах области гомогенности представляют из себяодну фазу переменного состава, их можно квалифицировать как твердые растворы. В случае если нарушения стехиометрии вызваны наличием в решетке катионных или анионных вакансий, т. е. при недостатке атомов в соответствующей катионной или анионной подрешетке, то такие твердые растворы иногда называют твердыми растворами вычитания (рис. 10, е), в случае если же эти нарушения вызваны избытком катионов или анионов в междоузлиях, то такие твердые растворы можно рассматривать как твердые растворы внедрения собственных катионов или анионов данного соединения в его кристаллическую решетку.
Возникновение нестехиометрических соединений является следствием термодинамически неизбежного обмена веществом данной кристаллической фазы с окружающей средой, т. е. другими фазами (газообразными, жидкими или твердыми). Степень отклонения от стехиометрии зависит прежде всего от физико-химической природы самого соединения и для разных соединений различна. Иногда область гомогенности (область нестехиометрии) бывает весьма узкой и ее обнаружение ограничивается недостаточной чувствительностью применяемых методов исследования. Такие соединения можно условно рассматривать как соединения, не имеющие области гомогенности, т. е. соединения постоянного состава. Их иногда называют линейными фазами, поскольку на диаграмме состояния состав этих соединений отображается вертикальной линией - ординатой соответствующего состава.
referatwork.ru
Энциклопедия Кольера. — Открытое общество. 2000.
РАСТВОРЫ — системы, состоящие из молекул, атомов и(или) ионов неск. разл. типов, при этом числа разл. частиц не находятся в к. л. определённых стехиометрич. соотношениях друг с другом (что отделяет Р. от хим. соединений). К Р. обычно относят такие… … Физическая энциклопедия
РАСТВОРЫ — РАСТВОРЫ, однородные системы (главным образом жидкости), состоящие из двух или более веществ (компонентов). Обычно преобладающий по концентрации компонент называется растворителем, остальные растворенными веществами. Раствор, в котором… … Современная энциклопедия
РАСТВОРЫ — однородные смеси переменного состава двух или большего числа веществ (компонентов). Могут быть газовыми (напр., воздух), жидкими и твердыми (напр., многие сплавы). В жидких растворах компонент, находящийся в избытке, называется растворителем, все … Большой Энциклопедический словарь
растворы — Жидкая лекарственная форма, полученная растворением жидких, твердых или газообразных веществ в соответствующем растворителе. Растворы используют для внутреннего и наружного применения, а также для инъекций. [МУ 64 01 001 2002] Тематики… … Справочник технического переводчика
РАСТВОРЫ — РАСТВОРЫ, оптически и химически однородные жидкости, состоящие из двух (или большего числа) различного рода молекул. Если каждый из компонентов является жидкостью и оба они находятся в приблизительно одинаковом количестве, так что нет оснований… … Большая медицинская энциклопедия
растворы — – однородные (гомогенные) системы переменного состава, состоящие из двух (растворенное вещество и растворитель) компонентов и более. Общая химия : учебник / А. В. Жолнин [1] … Химические термины
РАСТВОРЫ — (1) однородные (гомогенные) по внешнему виду системы переменного состава, состоящие обычно из двух млн. нескольких веществ (компонентов), равномерно распределённых друг в друге в виде отдельных атомов, ионов или молекул. Любой Р. состоит из (см.) … Большая политехническая энциклопедия
Растворы — [solutions] макроскопические однородное смеси > 2 веществ (компонентов), состав которых при данных внешних условиях может непрерывно меняться в некоторых пределах. Количественное соотношение компонентов в растворах определяет их концентрацией.… … Энциклопедический словарь по металлургии
Растворы — Растворение соли в воде Раствор гомогенная (однородная) смесь, образованная не менее чем двумя компонентами, один из которых называется растворителем, а другой растворимым веществом, это также система переменного состава, находящаяся в состоянии… … Википедия
РАСТВОРЫ — гомогенные системы, состоящие из двух или более компонентов, состав к рых в определенных пределах может непрерывно изменяться. От мех. смесей Р. отличаются своей однородностью и возрастанием энтропии системы при смешении компонентов. По… … Химическая энциклопедия
dic.academic.ru
Растворы — это однородные системы переменного состава, состоящие из двух или более веществ. Известны газообразные, жидкие и твердые растворы. К газообразным растворам относятся смеси любых газов, к твердым — многие сплавы металлов, стекла. Особое значение в природе и технике имеют жидкие растворы, образуемые растворением газов, жидкостей и твердых веществ в воде и других жидкостях. При растворении газов и твердых веществ в жидкости последнюю принято называть растворителем. При растворении жидкостей друг в друге растворителем считают ту из них, которой в растворе больше. Количество растворенного вещества, содержащееся в определенном количестве раствора или растворителя, называют концентрацией (см.) раствора. Растворы, в котором данное вещество больше не растворяется и, следовательно, избыток растворяемого вещества находится в равновесии с раствором, называют насыщенным. Концентрация ненасыщенного раствора меньше, а пересыщенного больше, чем насыщенного раствора. Пересыщенные растворы обычно образуются при медленном охлаждении горячих насыщенных растворов. Способность вещества растворяться в том или ином количестве в данном растворителе при образовании насыщенного раствора называют растворимостью вещества. Растворимость газов в жидкостях принято выражать коэффициентом поглощения (абсорбции), который указывает, сколько объемов газа (при t° 0° и давлении в 1 атм.) растворяется в одном объеме жидкости при данной температуре и парциальном давлении газа, равном 1 атм. Растворимость жидкостей и твердых веществ в жидкостях обычно выражают числом граммов растворяемого вещества на 100 г растворителя или на 100 мл насыщенного раствора. Растворимость зависит от природы растворяемого вещества и растворителя. С повышением температуры растворимость газов уменьшается, а жидкостей и твердых веществ в большинстве случаев повышается. Растворимость газов прямо пропорциональна давлению, при котором растворяется газ.
Растворы играют исключительную роль в природе и технике. Воды Мирового океана и атмосфера представляют собой растворы. С растворами связаны все физиологические и биохимические процессы, так как внутренней средой любого организма являются водные растворы различного рода веществ. Многие лекарственные средства также являются растворами.
См. также Буферные растворы, Диффузия, Изотонические растворы, Коллоиды, Электролиты.
Растворы (истинные растворы) — однородные (гомогенные) системы переменного состава, состоящие из двух или более веществ. От механических смесей растворы отличаются однородностью, от химических соединений — переменным составом.
Растворы играют исключительно важную роль в природе, технике и обыденной жизни. Подавляющее большинство известных химических реакций протекает в растворах. Воды мирового океана и атмосфера представляют собой растворы. Физиологические жидкости также являются растворами. Почти все лекарственные вещества оказывают свойственное им действие на организм в растворенном состоянии.
В зависимости от агрегатного состояния различают газообразные, жидкие и твердые растворы. К газообразным относят смеси любых газов и паров, в том числе и воздух. К твердым — многие сплавы, стекло, некоторые минералы и горные породы. Особое значение для изучения жизненных процессов в норме и патологии имеют жидкие растворы, образуемые растворением в жидкостях газов, жидкостей или твердых веществ.
При растворении в жидкости газов или твердых веществ жидкость принято называть растворителем, а газы или твердые вещества, находящиеся в растворах,— растворенными веществами.
В случае растворения одной жидкости в другой растворителем считают ту из них, которая находится в растворах в относительно большем количестве.
Насыщенным раствором называют раствор, находящийся в равновесии с избытком растворяемого вещества, ненасыщенным — раствор, концентрация которого меньше, чем насыщенного, а пересыщенным — раствор, концентрация которого больше, чем насыщенного.
В зависимости от величины молекулярного веса растворенного вещества жидкие растворы подразделяют на растворы низкомолекулярных веществ, например водные растворы обычных кислот, щелочей и солей, и на растворы высокомолекулярных соединений, к которым относятся растворы белков, полисахаридов, нуклеиновых кислот в воде, каучука в бензоле, нитроклетчатки в спиртоэфирной смеси и др. Растворы высокомолекулярных соединений обладают рядом характерных свойств, присущих типичным коллоидным растворам. (см. коллоиды).
Процесс растворения сопровождается выделением или поглощением тепла.
Растворимость данного вещества в жидкости измеряется концентрацией (см.) насыщенного его раствора в этой жидкости.
Установлен ряд качественных правил растворимости веществ в жидкостях. Полярные вещества хорошо растворимы в полярных растворителях (вода, спирт, ацетон и др.) и плохо в неполярных жидкостях (бензол, четыреххлористый углерод, сероуглерод и т. д.). Наоборот, неполярные вещества хорошо растворимы в неполярных растворителях и плохо — в полярных. Последнее правило кладется в основу некоторых теорий клеточной проницаемости. При этом имеется в виду, что оболочка многих клеток состоит из неполярных веществ — липидов.
Растворимость газов в жидкостях выражают коэффициентом поглощения, который указывает, сколько объемов данного газа, приведенных к нормальным условиям (t° 0° и давление 1 атм.), растворяется в одном объеме жидкости при данной температуре и парциальном давлении газа, равном 1 атм.
Растворимость газов в жидкостях изменяется в широких пределах в зависимости от природы жидкости и газа, а также от давления и температуры. Так, например, при t° 18° коэффициент поглощения азота равен 0,01698; кислорода — 0,03220; хлористого водорода — 427,9; аммиака — 748,8. Кислород примерно вдвое более растворим в воде, чем азот, поэтому в воздухе, растворенном в воде, содержание кислорода значительно больше, чем в атмосфере (34,1% по объему при t° 18° вместо 21,2% в атмосфере). Это имеет большое биологическое значение для организмов, обитающих в воде.
Зависимость растворимости газа от давления выражается законом Генри (см. Абсорбция).
При растворении смеси газов растворимость каждого газа согласно закону Дальтона пропорциональна его парциальному давлению над раствором.
С повышением температуры растворимость газа в жидкости уменьшается. Этим свойством газа пользуются для удаления из жидкостей растворенных в них газов.
Для этого раствор кипятят в течение некоторого времени, в результате чего газ удаляется из раствора вместе с пузырьками пара.
Указанная зависимость растворимости газов от температуры имеет большое биологическое значение для организмов, обитающих в воде.
С повышением температуры дыхание организмов и потребность в кислороде возрастают, тогда как концентрация его в воде падает, вследствие чего при нагревании может наступить гибель организмов от удушья из-за недостатка кислорода. При насыщении воды кислородом организмы становятся менее чувствительными к повышению температуры.
При растворении в воде солей и многих неэлектролитов, склонных к гидратации, растворимость в ней газов, как правило, значительно уменьшается в соответствии с законом И. М. Сеченова.
Растворимость жидкостей в жидкостях колеблется в широких пределах. Известны жидкости, неограниченно растворяющиеся друг в друге, например спирт и вода, серная кислота и вода, и др. Существуют жидкости, ограниченно растворимые друг в друге, например эфир растворим в воде в небольших количествах. При добавлении больших количеств образуются два слоя. Верхний слой представляет собой насыщенный раствор воды в эфире и содержит при t° 18° 1,2% воды и 98,8% эфира; нижний слой, являющийся насыщенным раствором эфира в воде, содержит 93,5% воды и 6,5% эфира.
Известны жидкости, практически нерастворимые друг в друге, например ртуть и вода, бензол и вода. С увеличением температуры взаимная растворимость ограниченно растворимых жидкостей в большинстве случаев возрастает и часто при достижении определенной для каждой пары жидкостей температуры, называемой критической, жидкости полностью смешиваются одна с другой. Например, фенол и вода при t° 68,8° (критическая температура) и выше растворяются друг в друге в любых пропорциях; ниже критической температуры они лишь ограниченно растворимы друг в друге.
При изменении давления взаимная растворимость жидкостей меняется незначительно.
Растворимость твердых веществ в жидкостях обычно выражают в граммах твердого безводного вещества, приходящихся на 100 г растворителя в насыщенном растворе или на 100 мл насыщенного раствора. В зависимости от природы твердого вещества и растворителя растворимость твердых веществ в жидкостях колеблется в очень широких пределах. Так, например, при 25° в 100 г воды растворяется 257 г AgNO3 и лишь 3·10-20 г HgS.
Растворимость твердых веществ зависит от степени их измельчения. Мелкие кристаллики, или зерна, размеры которых меньше примерно 0,1 мм, более растворимы чем крупные. Различные по содержанию кристаллизационной воды кристаллогидраты одного и того же химического соединения обладают неодинаковой растворимостью. Например, растворимость Na2SO4·10Н2O в воде меньше растворимости Na2SO4.
Растворимость твердых веществ в жидкостях почти не зависит от давления, но, как правило, сильно изменяется с температурой.
Обычно растворимость твердых веществ возрастает с повышением температуры, но известны вещества, как например Са(ОН)2, Са(С2Н3O2)2 и др., растворимость которых с повышением температуры понижается.
См. также Буферные растворы, Диффузия, Изотонические растворы, Электролиты.
www.medical-enc.ru
Экстракцией называют метод извлечения растворителями из смеси каких-либо веществ того или другого компонента.
В основе этого метода лежат закон распределения вещества, между двумя несмешивающимися жидкостями (если экстрагируют вещество из раствора в какой-нибудь жидкости) и различная растворимость отдельных веществ в данном растворителе (если вещество извлекают из смеси с другими веществами) .
Большинство веществ (как жидких, так и твердых) растворяется в нескольких растворителях. Если данное вещество растворено в каком-либо растворителе и к этому раствору прибавить другой растворитель, не смешивающийся с первым, то часть вещества перейдет в этот растворитель, образуя два слоя несмешивающихся жидкостей, в которых будет содержаться данное вещество. При этом распределение вещества между двумя растворителями будет вполне определенным для каждого отдельного случая *.
Например, уксусная кислота очень хорошо растворяется в воде и в бензоле. Бензол же в воде практически нерастворим. Поэтому, если к водному раствору уксусной кислоты добавить бензол, то уксусная кислота распределится между водой и бензолом. Повторяя операцию несколько раз, можно извлечь из воды почти всю уксусную кислоту.
* Отношение концентраций растворенного вещества в обеих Ъкидких фазах называется коэффициентом распределения.
Если же взять такой случай, когда растворители смешиваются между собой, а данное вещество растворяется только в одном из них, то при добавлении в раствор другого растворителя вещество выпадает.
Например, скипидар растворяется в спирте; если же в спиртовый раствор его добавить воду, то он выпадет в виде тонкой эмульсии. Другой пример: воск хорошо растворяется на холоду в хлороформе, но плохо в холодном этиловом спирте. Поэтому, если к хлороформному раствору воска добавить некоторое количество спирта, то воск выделится из раствора в виде хлопьев.
Если же имеется смесь двух или нескольких веществ и нужно выделить одно из них, то почти всегда можно подобрать такой растворитель, который растворяет только нужное вещество и почти не растворяет других.
Одним из важнейших растворителей является вода, в которой растворяется очень большое число различных неорганических и органических веществ.
Экстракция органическими растворителями применяется не только для извлечения органических веществ. Очень многие неорганические соли, главным образом га-логениды и нитраты, также растворяются в органических растворителях и при определенных условиях могут быть извлечены из водных растворов. На этом, в частности, основаны некоторые способы очистки различных неорганических солей с целью получения чистых металлов.
Кроме экстрагирования при помощи летучих органических растворителей или воды, извлечение нужного вещества в отдельных случаях можно проводить и нелетучими органическими веществами. Таким путем, например, можно извлекать некоторые составные части из растительной ткани, если после перемалывания последней полученную муку или настаивать, или взбалтывать, или перемешивать с жидкими маслами. Операцию можно проводить как на холоду, так и при нагревании.
При экстрагировании большое значение имеет температура, особенно в тех случаях, когда экстрагируют водой.
В некоторых случаях приходится проводить так называемую реэкстракцию. Например, органическим растворителем можно извлечь из смеси какое-либо вещество, хорошо растворяющееся в воде. Вместо отгонки органического растворителя полученный экстракт можно обработать водой и все извлеченное вещество перейдет в водный раствор, очищенный же от примеси органический растворитель может быть снова использован для экстракции.
В зависимости от того, в каком виде находится экстрагируемое вещество, приемы экстракции и конструкция применяемых для этой цели приборов несколько изменяются.
Для удобства рассмотрения процесса экстракции можно наметить два случая: экстрагирование твердых веществ (система «твердое — жидкость») и экстрагирование жидкостей (система «жидкость — жидкость»).
Кроме того, в зависимости от применяемых растворителей различают экстракцию:
а) водой или водными растворами;
б) органическими растворителями;
в) расплавами.
К оглавлению
см. также
www.himikatus.ru
Измельчение твердых веществ и смешивание как твердых, так и жидких веществ в практике химических лабораторий проводится часто. Все твердые материалы, поступающие в лабораторию для анализа, обязательно измельчают. Перед приготовлением растворов твердых веществ 1и также полезно предварительно измельчить. Для получения однородной смеси различных твердых веществ необходимо, чтобы смешиваемые твердые вещества были измельчены как можно тщательнее. [c.97]
Для переведения твердых веществ в порошкообразное состояние, т. е. для увеличения их поверхности, применяют ступки с пестиками, имеющими шишкообразное утолщение. Чаще всего в лабораториях пользуются фарфоровыми ступками. Твердые материалы после грубого измельчения обычно растирают в агатовой ступке или в ступке из спекшегося корунда. Для измельчения твердых веществ применяют также стальную ступку (рис. Е.7), называемую алмазной . Она представляет собой толстостенный стальной цилиндр с навинчивающейся нижней крышкой, в кото- [c.485]
При внесении в мерную колбу порошкообразных веществ нужно пользоваться только сухими воронками, желательно—с коротким концом. Пересыпаемое вещество должно быть сухим. Высыпав в воронку измельченное твердое вещество, легкими ударами по воронке добиваются того, чтобы все взятое вещество оказалось в колбе. Только после этого воронку можно обмывать водой. [c.47]
Мацерация (или при нагревании дигерирование). Измельченное твердое вещество размешивают с растворителем и затем фильтруют или декантируют. Для более полного извлечения операцию повторяют несколько раз, используя небольшие порции свежего растворителя. [c.35]
Ступки (рис. 56) применяют для измельчения твердых веществ. [c.50]
Для смешивания твердых веществ применяют также шаровые и стержневые мельницы и другие механические приспособления. Как правило, все приборы, используемые для измельчения твердых веществ, могут быть применены и для смешивания их. Жидкости смешивают вручную, механическим путем или при помощи [c.100]
Механические (измельчение твердых веществ и их транспортирование). [c.19]
Какие виды ступок применяют для измельчения твердых веществ [c.100]
Сыпучим матерпалом является продукция многих производств, в том числе и таких крупнотоннажных, как производства удобрений, строительных материалов, пластмасс, моющих средств, соды, красителей. Сыпучие материалы получают измельчением твердых веществ, выделением из суспензий, сжиганием газов, кристаллизацией, добычей из естественных карьеров, шахт. [c.147]
Пневматический транспорт заключается в переносе измельченного твердого вещества воздушным потоком (рис. П-66). Обычно этот поток движется вертикально вверх. В этом случае избыточное давление Ар, которым должен обладать воздух, равно сумме [c.164]
Кипящий слой образуется при пропускании восходящего потока газа через слой измельченного твердого вещества, В определенном интервале скоростей газового потока состояние системы газ -твердое ветцество напоминает слой кипящей жидкости. Частицы твердого веи ,ества перемещаются в -азовом потоке весьма интенсивно, что обеспечивает высокую текучесть кипящего слоя. [c.412]
Для измельчения твердых веществ используют фарфоровые или агатовые ступки с пестиками. При работе с большими количествами веществ применяют механические шаровые мельницы. [c.32]
Для гетерогенных реакций, когда одно из реагирующих веществ является, например, твердым, а второе газообразным, скорость реакции будет зависеть от степени измельчения твердого вещества и давления газообразного вещества. Но так как степень измельчения твердого вещества и его концентрация в процессе реакции не изменяются, то в уравнение ЗДМ входит только давление газообразного вещества. Например, уравнение ЗДМ для реакции горения угля [c.114]
Такого вывода сделать нельзя. Ес и реакция термодинамически возможна слева направо, то на ее пути могут сушествовать препятствия в виде большой энергии активации, большой вязкости жидкости и твердых реагентов, недостаточного измельчения твердых веществ и т. д. Для преодоления этого необходимо применить соответствующий катализатор, подогревание и т. д. [c.224]
Фарфоровые и агатовые ступки с пестиками применяют для измельчения твердых веществ. Они изготовляются разного диаметра. Внутренняя поверхность ступки и рабочая часть пестика не покрыты глазурью, что способствует лучшему измельчению вещества. Для тонкого измельчения очень твердых веществ применяют агатовые ступки. Грубое измельчение делают в стальных ступках. Фарфоровыми шпателями и ложками набирают сухие реактивы из банок. [c.307]
Экстрагирование (экстракция) — это довольно распространенный метод извлечения растворенного вещества путем взбалтывания с другим несмешивающимся растворителем, в котором данное вещество растворяется гораздо лучше. Процесс экстракции ускоряется при увеличении поверхности раздела между фазами, что достигается перемешиванием, измельчением твердых веществ и Другими приемами. [c.247]
Абсорберы с механическим перемешиванием используют сравнительно редко. Они находят применение при небольших отношениях газ жидкость, а также, если в поглотителе присутствует мелко измельченное твердое вещество во взвешенном состоянии. [c.602]
При51енение кипящего или псевдоожиженного слоя мелко-измельченного твердого вещества приобретает в современной нефтепереработке огромное практическое значение. [c.338]
Дробле,ние и размол представляют собой процессы механического измельчения твердых веществ. В результате измельчения значительно увеличивается поверхность обрабатываемого материала. [c.49]
В лаборатории используется фарфоровая посуда, которая более прочная, чем стеклянная, не боится сильного нагревания и резкого перепада температур. Прй5.ца, ассортимент фарфоровой посуды менее многочислен, чем стеклянной, поскольку она не прозрачна, более тяжелая, труднообрабатываема. Из фарфора чаще всего изготавливают стаканы, чашки для выпаривания, ступки для измельчения твердых веществ, ложки, шпатели. [c.30]
Иля измельчения твердых веществ используют фарфоровые или ага- т( 1 Ы ступки с пестиками. При работе С большими количествами веществ (,[c.32]
Для малорастворимых твердых веществ можно получить отражательный спектр. При интенсивном измельчении твердого вещества уменьшается часть светового потока, отражающаяся от его поверхности, а большая часть падающего света проникает и глубь вещества. Эта доля частично поглощается, а частично, после м-ногократного отражения снова диффузно выделяется через поверхность вещества наружу. При таком внутреннем отражении ослабляются участки спектра, связанные с абсорбцией света молекулами. Для дальнейшего уменьшения поверхностного отражения порошкообразное вещество можно смешать с веществом, индифферентным в используемой спектральной области (белый стандарт), и получить известную аналогию с раствором вещества. Отражательная спектроскопия пригодна также для получения спектров поглощения малорастворимых веществ. Этот метод применяют в основном при исследовании состава красок и строения неорганических твердых соединений. Абсорбция света окрашенными катионами зависит от различных факторов от координационного числа, симметрии молекулы и межатомных расстояний в кристаллической решетке соединения. По изменению абсорбции можно сделать выводы об изменениях, происходящих в решетке соединения при включении посторонних ионов. [c.355]
К соляной кислоте прилили лакмус, затем прибавили рассчитанное количество тщательно измельченного твердого вещества А и хорошо перемешали. Образовалось новое белое вещество, нерастворимое ни в воде, пи в кислотах, а лакмус приобрел фиолетовую окраску. Что за вещество А 1-1апншнте уравнение реакции его с соляной кислотой. [c.154]
Колонка в жидкожидкостной хроматографии состоит из слоя тонко измельченного твердого вещества (носителя), обычно инертного, на котором сорбируется неподвижная распределяющая фаза. Подвижная фаза протекает через колонку и таким образом на очень большой поверхности вступает в контакт с неподвижной фазой. При этом происходит перераспределение компонентов между подвижным и неподвижным растворителями вследствие различного сродства компонентов к растворителям. Различие в распределении компонентов между двумя фазами, обусловленное различным их сродством к подвижному растворителю, определяет неодинаковую скорость их движения в колонке, что и приводит к разделению. [c.62]
Получение коллоидных растворов (золей) путем диспергирования осуществляется механическим измельчением твердого вещества в ступке или при помощи коллоидной /мельницы в присутствии стабилизатора, а также пептиза-цией. Пептизацией называется процесс получения золей из студней или рыхлых осадков при действии на них некоторых веществ, способных хорошо адсорбироваться на поверхности коллоидных частиц и таким путем сообщать им способность перехода в золь. При пептизации происходит не изменение степени дисперсности частиц, образующих студень или осадок, а только их разъединение. [c.208]
chem21.info
Пример видео 3 | Пример видео 2 | Пример видео 6 | Пример видео 1 | Пример видео 5 | Пример видео 4 |
Администрация муниципального образования «Городское поселение – г.Осташков»