Многие вещи нам непонятны не потому, что наши понятия слабы; но потому, что сии вещи не входят в круг наших понятий.
Козьма Прутков
Результаты исследования молекулярной генетики и молекулярной биологии являются иллюстрацией лидирующего состояния биологии в современном естествознании. На их базе возникли новые научные направления, такие как генная инженерия и биотехнология.
Генетическая инженерия— эта система экспериментальных приемов, позволяющих конструировать искусственные генетические структуры в виде гибридных молекул ДНК. Суть генетической инженерии сводится к переносу в организм чужеродных генов, которые могут сообщать им полезные свойства. Геном является определенный участок молекулы ДНК, который хранит и передает наследственную информацию. Молекулы ДНК представляют собой длинные полимерные молекулы — по-линуклеотиды, состоящие из мономерных звеньев. Элементарными частицами генетического материала являются мономерные звенья полимерной молекулы ДНК. Гены содержат в себе такую информацию, код или своего рода программу, по указанию которой происходит синтез белков в клетках данного организма. На линейной молекуле ДНК отдельные гены разделены регулятор-ными участками, и они не могут перекрываться. Молекулу ДНК
можно разбить на непрерывные участки (гены), на каждом из которых записана информация о последовательности аминокислот одного белка. Если найти методы, позволяющие резать ДНК на точно необходимые куски, отделять разные куски друг от друга, затем их сшивать по усмотрению экспериментатора и переносить их в клетку другого организма, то можно заставить эту клетку синтезировать не свойственный ему (т. е. чужой) белок.
Итак, процедуры генетической инженерии сводятся к тому, что из набора фрагментов ДНК, содержащих нужный ген, собирают гибридную структуру, которую затем вводят в клетку. Введенная генетическая информация экспрессируется, что приводит к синтезу нового продукта. Таким образом, вводя в клетку новую генетическую информацию в виде гибридных молекул ДНК, можно получить измененный организм. Синтезирование нужных белков, гормонов, вакцин и других необходимых для медицины и сельского хозяйства соединений методами молекулярной биологии и есть основная задача генной инженерии. Сложной задачей здесь является поиск методов резки молекулы ДНК с точностью до миллиардных долей метра, с тем чтобы получить все одинаковые молекулы в заданном образце строго в одних и тех же местах. После долгих исследований ученые установили, что в роли такого высокоточного скальпеля могут быть применены ферменты рестриктазы. Они узнают самые разные последовательности нуклеотидов и разрезают их в нужном месте. Полученные куски затем сшивают с помощью другого фермента, называемого ДНК-лигазой, способного залечивать разрывы в цепи ДНК. Таким путем, искусственно можно получить какие угодно комбинации генов, которые в естественных условиях нельзя реализовать из-за существующих барьеров на межвидовое скрещивание.
Полученная путем перетасовки генов гибридная молекула ДНК должна размножаться в составе живой клетки и менять ее генетические свойства. В этом особая роль принадлежит плаз-мидам. Оказывается, в клетках бактерий, дрожжей и высших организмов кроме основных молекул ДНК, не переходящих из одной клетки в другую, присутствуют еще и маленькие молеку-
лы ДНК — плазмиды, которыми клетки легко обмениваются. Если из бактерий извлечь плазмиды и встроить в них фрагменты чужой молекулы ДНК, а затем залечить раны и смешать полученные гибридные плазмиды с бактериальными клетками, то такие гибридные плазмиды окажутся биологически активными и будут размножаться. Далее в результате размножения гибридных плазмид с бактерией-хозяйкой удается многократно умножить (тиражировать) встроенный чужеродный фрагмент молекулы ДНК. Этот прием генной инженерии получил название клонирования.Метод клонирования с помощью плазмид дает молекулярной биологии уникальную возможность перетасовки генов бактерий, вирусов, дрожжей и высших организмов — человека и животных.
Еще несколько лет назад ученые задавали вопрос, можно ли создать сорта, сбалансированные по составу аминокислот, устойчивые к холоду, засухе, не поражаемые вредителями. Сегодня можно с уверенностью утверждать, что такие трансгенные растения уже вышли в поле. Областей применения трансгенных растений довольно много. На уровне лабораторных экспериментов ведутся работы по получению растений, устойчивых к холоду, тяжелым металлам, повышенному содержанию солей и др. Трансгенные растения, устойчивые к гербицидам (химическим соединениям, которые используют для борьбы с сорняками), к вирусам, растения с повышенным содержанием масел и незаменимых аминокислот уже выращивают на миллионах гектаров. Не менее интересен и другой аспект работ — получены трансгенные растения с измененными декоративными свойствами. Поскольку основные трансгенные формы кукурузы, сои, хлопчатника с устойчивостью к гербицидам и насекомым хорошо себя зарекомендовали, есть все основания ожидать, что площадь под генно-инженерными растениями в будущем увеличится.
Среди последних достижений инженерной, или конструктивной, биологии следует упомянуть успешное клонирование млекопитающих (овцы, свиньи, коровы), создание первых искусственных хромосом человека, создание трансгенных мышей.
Если в плазму встроить ген (фрагмент ДНК) человека, то такая плазмида внутри бактерии или дрожжей начинает вырабатывать белок, отвечающий человеческому гену. Разработка технологии, заставляющей бактериальные или дрожжевые клетки синтезировать в больших количествах необходимые человеку для различных целей белки, положило начало новой биотехнологической эре.
Услугами генной инженерии особенно успешно пользуются фармацевты, для которых этот метод дает сравнительно дешевые, но жизненно необходимые гормоны, такие как инсулин, интерферон, гормоны роста и другие, имеющие белковую природу. По заказу фармацевтов генными инженерами налажено производство человеческого гормона инсулина (вместо ранее применяемого животного инсулина), играющего важную роль в борьбе с сахарным диабетом. Методом генной инженерии получают также достаточно дешевый и чистый человеческий интерферон — белок, обладающий универсальным антивирусным действием, антиген вируса гепатита В.
Другими важнейшими областями, в которых успешно применяются достижения генной инженерии, являются медицина и сельское хозяйство. На наших глазах современная биология превратилась в науку, которая дала начало технологиям, преобразившим производство. Биотехнологиястала реальной производительной силой. Питание и медицинское обслуживание возрастающего быстрыми темпами населения Земли представляют собой наиболее важные проблемы, стоящие перед человечеством, и решать их скорее всего придется методами биотехнологии.
Производство и применение вакцин против вирусных заболеваний позволили медиками ликвидировать полностью эпидемии чумы и оспы, от которых раньше умирали миллионы людей. Метод генной инженерии, в отличие от других методов, позволяет получить абсолютно безвредную (не содержащую инфекционного начала) вакцину. Ведутся также работы по производству вакцин от гриппа, гепатита и других вирусных заболеваний человека.
В настоящее время для производства интерферона и гормона роста в качестве источника плазмидов вместо бактерий широко применяются также дрожжи, которые на эволюционной лестнице стоят где-то между бактериями и высшими организмами. Еще одной задачей, успешно решаемой в настоящее время биотехнологией, является производство белка, содержащего незаменимую аминокислоту лизин, и используемого в качестве полноценных кормовых добавок для животных.
В биотехнологии применяются не только методы генной инженерии, но и методы клеточной инженерии. Суть метода клеточной инженериисводится к следующему: из организма искусственно выделяют клетки, которые затем размножают в специально подобранных питательных средах. Полученные таким путем клеточные культуры используются для производства ценных лекарственных веществ и для гибридизации клеток, которые невозможно воспроизвести обычным половым путем. Методом гибридизации соматических клеток получены новые формы культурных растений (томаты, картофель). Гибридизация же животных клеток (например, раковых клеток и клеток крови — лимфоцитов) применяется для выработки ценных медицинских препаратов.
Читайте также:
lektsia.com
И все же нашлись некоторые ценные косвенные методы. Известно, что некоторые дрожжи при выращивании их в сахарном растворе часто приобретают способность сбраживать такой сахар, который они раньше сбраживать не могли. Для этого они начинают вырабатывать так называемый адаптивный фермент. Биохимики и генетики знают, что, как правило, данный вид дрожжей может образовывать адаптивный фермент для данного сахара только тогда, когда эта способность заложена в его наследственности. Другими словами, образование адаптивного фермента зависит от наличия соответствующего гена. Однако этот ген должен быть [c.223]
Генетически модифицированные дрожжи. Развитие генетики и молекулярной биологии дрожжей позволило приспособить многие штаммы дрожжей к потребно-стям пивоваров, что, в свою очередь, привело к упрощению процесса пивоварения. На предмет возможной модификации были изучены все важнейшие виды пивоваренных дрожжей, и созданы довольно интересные штаммы (их обзор см. в [46]). В некоторых работах [27,36,93, 95, 124] описана перенос в дрожжах так называемого гена-киллера , который представляет собой природный дрожжевой токсин, убивающий нестойкие дрожжевые клетки. Перенос этого гена в пивоваренные дрожжи помогает предотвратить их контаминацию дикими дрожжами при брожении. Некоторые из полученных дрожжевых штаммов с таким геном по характеру брожения и вкусовым качествам конечного пива дают такие же результаты, как и исходные немодифицированные штаммы. [c.70]
Роль генов-регуляторов в адаптивной эволюции остается одной из главных нерешенных проблем эволюционной генетики. Приведенные выше данные указывают на то, что изменения, происходящие в регуляторных генах, возможно, очень важны для адаптивной эволюции, т.е. для эволюции морфологии, поведения и механизмов репродуктивной изоляции. Более того, опыты, сравнительно недавно поставленные на бактериях, дрожжах и дрозофилах, показывают, что приспособление организма к новым условиям обитания часто обусловлено изменениями в регуляторных генах, хотя в дальнейшем могут возникать изменения и в структурных генах. Однако о механизмах действия генов-регуляторов у высших организмов в настоящее время мало что известно. [c.241]
Возможность осуществлять тетрадный анализ и относительная простота манипулирования сделали дрожжи важным объектом исследований по биохимической генетике. [c.180]
В последние годы в генетико-селекционной работе все чаще используются микробные протопласты. С помощью слияния протопластов можно получать генетические рекомбинанты у тех видов и щтаммов микроорганизмов, у которых не обнаружены собственные системы обмена наследственной информацией и которые в естественных условиях никогда не скрещиваются между собой. Трансформация протопластов, по-видимому, является универсальным способом введения молекул ДКК в клетки бактерий, актиномицетов, дрожжей и грибов. [c.124]
Дрожжи представляют особый интерес в связи с тем, что они являются простейшими эукариотами. Предполагается, что исследование дрожжей, к которым можно уже сегодня применять многие методы молекулярной генетики и генной инженерии, приведет к пониманию некоторых фундаментальных особенностей функционирования эукариотической клетки. [c.175]
Многоклеточные эукариоты неудобны для изучения генетики митохондрий, поскольку их клетки — облигатные аэробы, которые не могут существовать при нарушении основной функции митохондрий — дыхания. В то же время дрожжи-сахаромицеты являются факультативными аэробами. При подавлении дыхания они могут существовать за счет брожения, используя для этого глюкозу и некоторые другие сахара в качестве источников углерода. На неферментируемых источниках углерода, например, на этаноле, глицерине, лактате кальция и др., в отсутствие дыхания дрожжи не растут. [c.238]
Генетика митохондрий лучше всего разработана для дрожжей-сахаромицетов, однако ряд примеров митохондриального наследования получен и у других объектов. [c.242]
Ретротранспозоны были открыты как последовательности ДНК с неизвестной функцией, которую предстояло найти, исходя из их структуры и других свойств. В последнее время структурно-функциональный анализ полных последовательностей геномов различных организмов, таких разнообразных, как бактерии, дрожжи, нематода, дрозофила, мышь, человек, рассматривается как одно из наиболее перспективных направлений генетики, молекулярной и клеточной биологии. Предполагается, что полное описание генома является базовым этапом на пути к пониманию его функционирования в контексте целого организма. Исследование ретротранспозонов представляет собой пример изучения генетических элементов в направлении от молекулярной структуры к функции, показывающий, что путь этот даже в таком простом случае весьма сложен. [c.28]
Лаборатория молекулярной генетики дрожжей Отдела молекулярной генетики клетки [c.61]
Дрожжи Sa haromy es erevisiae — это непатогенные одноклеточные микроорганизмы с диаметром клетки примерно 5 мкм, которые во многих отношениях представляют собой эукариотический аналог Е. соН. Их генетика, молекулярная биология и метаболизм детально изучены. S. erevisiae размножаются почкованием и хорошо растут на такой же простой среде, как и Е. соИ. Их способность к превращению сахара в этанол и углекислый газ издавна использовалась для изготовления алкогольных напитков и хлеба. В настоящее время ежегодно во всем мире расходуется более [c.27]
Для экспрессии клонированных эукариотических генов интенсивно используют обычные дрожжи Sa haromy es erevisiae. Тому есть несколько причин. Во-первых, это одноклеточный организм, генетика и физиология которого детально изучены и который можно выращивать как в небольших лабораторных колбах, так и в промышленных биореакторах. Во-вторых, выделены и охарактеризованы несколько сильных промоторов этих дрожжей, а для систем эндогенных дрожжевых экспрессирующих векторов могут использоваться природные, так называемые 2 мкм-плазмиды. В-третьих, в клетках [c.136]
Для синтеза разнообразных белков, кодируемых клонированными генами, использовались дрожжи S. erevisiae. Их генетика хорошо изучена, а кроме того, их можно выращивать в больших ферментерах. Чтобы упростить очистку белков, были сконструированы векторы, обеспечивающие их секрецию. С помощью S. erevisiae было получено множество самых разных аутентичных белков. Однако многие рекомбинантные белки в этой системе не подвергались носттрансляционной модификации, к тому же их выход зачастую был недостаточно высок. Поэтому были предприняты попытки разработать другие дрожжевые системы синтеза рекомбинантных белков. [c.154]
Хотя генетика дрожжей развивается уже в течение многих лет, мы лишь недавно научились осуш,ествлять селекцию дрожжей, используемых в производстве пива. По мере углубления наших знаний о свойствах дрожжей и тех качествах, которые они придают конечному продукту, все успешнее идет работа по выведению новых штаммов пивных дрожжей. В конечном счете мы сможем создать штамм, позволяющий получить идеальный продукт. Треб ования к таким идеальным дрожжам будут, естествен , зависеть от способа сбраживания и желаемых качеств Лива. К числу наиболее важных свойств относятся продуктивность, способность формировать осадок, сбраживать мальтотриозу и т. д. Принимаются во внимание и вкусовые качества получающегося пива, т. е. образование веществ, ответственных за их формирование. Ранее основным способом получения штаммов, дающих продукт нужного качества, был их отбор из существующих пивных дрожжей. Вести отбор было выгоднее, чем заниматься гибридизацией, отчасти из-за малой способности пивных дрожжей к спорообразованию и низкой жизнеспособности аскоспор. В каждом аске образуется от одной до четырех спор, но не все они освобождаются при созревании. Дрожжи из рода Sa haromy es размножаются в основном вегетативно. При этом за счет множественного латерального почкования формируются сферические, эллипсоидные или реже цилиндрические дочерние клетки. Поскольку для развития технологии пивоварения могут понадобиться штаммы дрожжей, отличающиеся по свойствам от обычно используемых, придется прибегнуть к гибридизации. Основным вкладом биотехнологии Б пивоваренную промышленность будет создание штаммов дрожжей, способных давать пиво с желаемыми свойствами. [c.107]
Однако за последнее время нейроспору применяли в основном для генетико-биохимических исследований. Пионерами в этой области являются Бидл и Татум (лауреаты Нобелевской премии 1958 г.), которые опубликовали первые результаты своих работ на нейроспоре в 1941 г. В дальнейшем генетико-биохимические исследования проводились и на других грибах (разные виды дрожжей, Aspergillus и Ophiostoma) и очень широко — на бактериях особенно следует отметить замечательные работы Ледерберга (лауреат Нобелевской премии 1958 г.). [c.231]
Общеизвестным примером того же порядка могут служить полиплоидные серии (от п до 6п ) дрожжевых грибов Sa haromy es erevi— siae, однако они возникли не спонтанно, а посредством экспериментальной гибридизации с последовательным добавлением гаплоидного генома [18-21 ]. Эти серии служат интересной моделью для решения многих актуальных вопросов современной генетики, биофизики и других отраслей биологической науки. Исследование полиплоидных серий дрожжей делает возможным изучение проблем доминирования и взаимодействия аллелей [22 - 24]. [c.42]
Гибридизация ДНК - ДНК и ДНК - РНК. Если дуплексы ДНК, выделенные из клеток человека и мыши, денатурировать нагреванием по отдельности, а затем смешать и выдержать в течение многих часов при температуре ниже температуры плавления, то большая часть цепей мышиной ДНК отжигается с комплементарными цепями мышиной ДНК с образованием исходного дуплекса. Аналогичным образом большинство цепей ДНК человека воссоединяется с комплементарными цепями ДНК человека. Наряду с этим некоторое число одиночных цепей ДНК мыши будет связываться с одиночными цепями ДНК человека, в результате чего появляются гибридные дуплексы, в которых отдельные участки цепей ДНК мыши образуют двухцепочечные области с участками цепей ДНК человека (при наличии комплементарных пар оснований). Гибридные дуплексы возникают только при условии, что между ДНК двух разных видов существует комплементарное сходство в нуклеотидных последовательностях. Чем ближе родство двух видов, тем в большей степени их ДНК будут образовывать гибриды. Например, ДНК человека гораздо лучше образует гибриды с ДНК мыши, чем с ДНК дрожжей. При наличии комплементарных пар оснований возможно образование гибридных дуплексов ДНК — РНК. Например, в ходе транскрипции новосинтезируемая цепь РНК временно образует короткие отрезки гибридной двойной спирали ДНК — РНК (за счет спаривания ее оснований с основаниями матричной цепй ДНК). Гибридизационные тесты используют в биохимической генетике для определения того, насколько близки два вида для установления связи данной ДНК с какой-либо РНК для выделения и очистки генов и РНК и определения их нуклеотидных последовательностей. [c.300]
В одной из последних сводок по генетике дрожжей (Mortimer, Hawthorne, 1969) подробно разбираются все возможные нарушения, возникающие Б генетическом материале дрожн евых клеток во время митоза. [c.19]
Конверсия генов. Еще один относящийся к обсуждаемому предмету феномен давно известен в экспериментальной генетике под названием генной конверсии [122]. Различные данные, полученные при изучении глобиновых генов, позволяют предполагать наличие такого феномена и в геноме человека (разд. 4.3 см. также рис. 2.97). Генная конверсия есть не что иное, как модификация одного из двух аллелей другим, в результате чего гетерозигота Аа, например, становится гомозиготой АА. Винклер, который впервые обсуждал этот феномен более 50 лет тому назад, допускал физиологическое взаимодействие аллелей. Однако работы на дрожжах показали, что он связан с атипичной рекомбинацией. Данный процесс иллюстрирован на рис. 2.97. Кроссинговер всегда приводит к разрыву последовательности ДНК в сайте перекреста. Обычно разрыв репарируется, для чего последовательность сестринской хроматиды используется как матрица. Таким образом восстанавливается исходная двойная спираль. Однако иногда репарация осуществляется на матрице гомологичной хромосомы. В этом случае наблюдаются отклонения от обычной сегрегации. Генная конверсия имеет место и в соматических тканях, особенно у растений. Возможно, что в этом случае рекомбинационный процесс протекает атипично. Наличие генной конверсии не является неожиданным, поскольку спаривание гомологичных хромосом в соматических клетках и соматический кроссинговер характерны для многих видов [c.144]
Различные штаммы одного и того же рода и вида отличаются по своей способности осуществлять то или иное биохимическое превращение. Их называют природными вариантами. Рентгеновское или ультрафиолетовое облучение может иногда вызвать генетические изменения, ведущие к образованию микроорганизмов, обладающих новыми, ранее не известными синтетическими возможностями. Такие соединения, как колхицин и азотистые аналоги иприта, также являются мутагенными агентами. Измененные ормы называются мутантами. Существуют и другие подходы к решению вопросов генетики, например гибридизация дрожжей. [c.12]
На противоположном конце спектра работают методы генетики соматических клеток, гибридизация in situ, анализ генетического сцепления их разрешающая способность ограничена 1000—5000 т. п. и. И наконец, середине щкалы соответствуют три метода, позволяющие использовать данные картирования для поиска специфических молекулярных нарушений. Это пульс-электрофорез [6—И], прыжки по хромосоме [3—5] и клонирование в клетках дрожжей [12]. [c.97]
В некоторых случаях механизм взаимодействия аллелей расшифрован. Вернемся к примеру с красными и белыми дрожжами. Существует большое число красных аденинзависимых мутантов дрожжей. Большинство из них несет изменения одного и того же гена. Во всех случаях потребность в аденине и красная окраска колоний рецессивны по отношению к белой окраске и, соответственно, к отсутствию потребности в аденине. Аллель, определяющая доминантный признак, обозначается, как это принято в генетике, прописными буквами ADE — сокращенное наименование признака. Такую аллель условно называют нормальной или аллелью дикого типа. Поскольку путь биосинтеза аденина состоит из многих (двенадцати) этапов, каждый ген, контролирующий отдельный этап, имеет свой номер. Интересующий нас ген — ADE 2. [c.36]
В последние годы активно разрабатывается именно генетика одноклеточных эукариот. Это объясняется тем, что данная группа организмов включает многие объекты — продуценты белка, антибиотиков и других биологически активных веществ (дрожжи, пе-ницилл, аспергилл и другие грибы), потенциальные продуценты биомассы (одноклеточные водоросли). Многие грибы и простейшие патогенны для человека, животных и сельскохозяйственных растений. [c.182]
Первыми микроорганизмами, которые начала осваивать генетика в 30-е годы, были грибы, прежде всего J eurospora и различные виды дрожжей рода Sa haromy es. [c.182]
Разнообразие жизненных циклов и типов несовместимости у грибов накладывает отпечаток и на приемы, используемые при их гибридологическом анализе. У одних грибов половой процесс осуществляется на основе гетерогамии, как у нейроспоры, что позволяет ставить реципрокные скрещивания. У других — на основе изогамии, как у дрожжей сахаромицетов. Наряду с половым размножением существует полный или неполный парасексуальный цикл в зависимости от вида грибов. Парасексуальный цикл — это процесс объединения и последующей рекомбинации генов на основе событий, происходящих в митозе, а не в мейозе, без участия оплодотворения половым путем. Остановимся только на двух подходах, внесших существенный вклад в разработку проблем общей генетики тетрадном анализе и генетическом анализе на основе парасексуального процесса. [c.185]
Аналогичные результаты получены для дрожжей-сахаромицетов при действии аминогликозидного антибиотика паромомицина, также приводящем к фенотипической супрессии нонсенс-аллелей, возникающих в различных генах. В работах сотрудников кафедры генетики и селекции Ленинградского университета показано, что у дрожжей фенотипическая супрессия мутаций-нонсенсов происходит и при действии таких обычных условий, как понижение температуры с 30 до 20°С или при замене глюкозы на нефермен-тируемые источники углерода (глицерин, этанол или галактоза). [c.448]
Началась эпоха интегральных исследований геномов, которые образовали специфический раздел молекулярной генетики - геномику. Геномика сегодня занимается анализом структуры и функций геномов как интегрального функционального массива генов, их регуляторных элементов и других последовательностей, необходимых для функционирования генома. В круг ее интересов входит также анализ появившихся и закрепившихся в геноме паразитических эгоистических элементов, значимость которых для существования и эволюции геномов еще предстоит узнать. Начавшись с исследований генома человека, геномика значительно расширила диапазон своих интересов и включила в них множество модельных организмов - бактерии и дрожжи, нематоду, дрозофилу и мышь, геномы которых исследуются и сравниваются между собой для расшифровки структурных основ их функциональной организации. Возникло единое пространство геномной информации, которое стремительно наращивает свой информационный потенциал. Сравнительный анализ структур геномов различных организмов составляет отправную точку для функциональной геномики, которая призвана определять функциональную значимость вновь определяемых последовательностей. Концепция в гомологии структур зашифрована аналогия функций оказывается весьма плодотворной и помогает устанавливать функции генов человека на основании известных функций генов модельных организмов. Таким образом, современная молекулярная генетика оперирует в едином геномно-информационном поле, где информация о функциях генов в различных организмах интегрируется и распространяется на другие организмы. [c.6]
Современная геномика была бы невозможной без развития систем клонирования крупных фрагментов генома в специальных векторах, способных реплицироваться в клетках вместе со встроенными в них фрагментами. К таким векторам относятся, в частности, искусственные дрожжевые хромосомы (YA ), появление которых стало возможным благодаря развитию молекулярной генетики дрожжей. В результате их появления геном удалось разбить на фрагменты длиной примерно 10 пар оснований, которые в составе YA находятся в библиотеках генов. Каждый фрагмент в этой библиотеке картирован, т.е. приписан к определенному участку хромосом. Это создает предпосылки для быстрого выделения нужного фрагмента генома для работы in vitro как для структурного, так и для функционального анализа. Наличие библиотек фрагментов лежит в основе определения первичной структуры всего генома. [c.7]
chem21.info
Биотехнология. Заметный прогресс в понимании основных принципов, определяющих структуру биомолекул (ДНК, белков) и их функционирование в биологических системах, был достигнут молекулярными биологами и биохимиками. Сейчас создается промышленность, использующая новые биотехнологии, являющиеся результатом успехов генной инженерии - способности контролировать на клеточном уровне химические процессы в организмах. [c.540]
Генная инженерия — технология манипуляций с веществом наследственности ДНК — один из видов биотехнологии, дающий новые возможности, в частности в производстве энергии и новых материалов. [c.247]
К этому направлению научно-технического прогресса следует относиться особенно осторожно. Существует мнение, что биотехнология может внести решающий вклад в решение глобальных проблем человечества. Однако даже с помощью обычной гибридизации — близкородственного скрещивания — получают, по сути, уродов, пусть и с полезными для цивилизации свойствами. С помощью же генной инженерии оказалось возможным создавать структуры ДНК, которых никогда не существовало в биосфере (в химии аналог — ксенобиотики) генная инженерия, таким образом, разрушает барьер, разрешающий генетический обмен только в пределах одного биологического вида или близкородственных видов, позволяет переносить гены из одного живого организма в любой другой. Этот факт открывает перспективы создания, в частности, микроорганизмов и растений с полезными для цивилизации свойствами и таит в себе колоссальную опасность этического и экологического характера. Наиболее известный случай здесь — синтез и использование гормонов роста в животноводстве, приведшие к так называемому коровьему бешенству . [c.248]
Расширение посевов генетически модифицированных масличных культур ведется в США, Канаде, Мексике, Аргентине, Бразилии, Австралии [182]. Кроме совершенствования химического состава жиров, генная инженерия способствует созданию высокоурожайных сортов, устойчивых к воздействию вредителей и химических средств, применяемых в сельском хозяйстве. [c.249]
В результате научно-технической революции появились новые отрасли промышленности. Особое значение имели освоение атомной энергии, развитие ракетостроения и космические исследования, создание полупроводниковой техники, получение новых материалов и композиций и т. д. Существенное значение приобрели вопросы контроля за загрязнением окружающей среды и другие экологические проблемы. Нельзя не отметить также успехов биохимии, раскрытия роли микроэлементов в процессах жизнедеятельности и достижения генной инженерии. [c.12]
Будут более полно удовлетворяться потребности сельского хозяйства в продуктах микробиологического синтеза, а также активнее внедряться научно-технические достижения в области биотехнологии и генной инженерии. [c.10]
Мутации, рак и генная инженерия [c.289]
Получение. Небелковые Г., пептидные Г. небольшой мол. массы и активные фрагменты нек-рых полипептидных Г. синтезируют. Полипептидные и белковые Г. получают гл. обр. экстрагированием из желез убойного скота и послед. очисткой. Разработаны способы получения нек-рых пептидных Г. (напр., инсулина и соматотропина) с использованием генной инженерии. Метод основан на выделении гена соответствующего Г. и включении его в геном бактериальных клеток, приобретающих т. обр. способность к синтезу данного Г. В результате размножения образуются большие массы бактерий, активно синтезирующих Г. [c.598]
В настоящее время И. получают из прир. источников или методами, генной инженерии. Человеческий лейкоцитарный И. используют для лечения острого лейкоза, волосатоклеточной лейкемии, а также для профилактики и лечения гриппа и др. вирусных респираторных заболеваний. [c.248]
Следует отметить, что биотехнологические методы при решении проблем экологии и охраны окружающей среды применяются пока в существенно меньших масштабах, чем они того заслуживают. Однако непрерывное ужесточение требований к качеству природной среды, несомненно, должно способствовать тому, что экологическая биотехнология в недалеком будущем займет свое законное место в проектах и программах, целью которых являются защита окружающей среды от загрязнений, рекультивация земель сельскохозяйственного назначения, восстановление техногенно нарушенных природных ландшафтов и т,д При развитии этого направления необходимо исходить из использования пp фoдныx микробных штаммов, которые затем в той шш иной степени могут быть модифицированы методами генной инженерии. Биологическое разложение загрязняющих веществ целесообразно сочетать с другими физическими и химическими методами обработки. [c.190]
Изменяется и ситуация с источниками сырья для производства полимерных материалов. В последние 40-50 лет развитие производства и переработки волокнообразующих полимерных материалов базируется на использовании продуктов глубокой переработки природного углеводородного сырья. Однако с учетом быстро прогрессирующего исчерпания мировых запасов нефти и газа все большее внимание вновь уделяется проблемам технического использования природных полимеров - различных полиуглеводов и фибриллярных белков, чему способствуют успехи генной инженерии и других направлений биотехнологии. [c.8]
Вовлечение жиров в техносферу на современном этапе носит двойственный характер. Первое направление здесь — применение их как таковых в композициях масел, смазок и СОТС (возможно — в смешении с нефтяными или синтетическими маслами) второе — использование жиров на качественно ином уровне — с разработкой принципиально новых присалок и использованием технологических процессов для получения так называемых полусинтетических масел типа сложных эфиров или углеводородов. Весьма важной разновидностью второго направления является использование методов генной инженерии и биотехнологии, когда на стадии селекции масличных культур заранее программируется химический состав жиров с целью достижения варианта, оптимального для техносферы. [c.42]
Таким образо.м, при повторном вовлечении жиров в техносферу предг1ринимаются попытки как бы примирить их экологические и технические свойства — в первую очередь повысить ан-тиокислительную и термическую стабильность, улучшить противокоррозионные свойства все это достигается либо за счет химической переработки жиров, либо путем ввода присадок, как правило, ухудшающих экологические свойства кроме того, для жиров необходим синтез и подбор принишшально иных антиокислителей по сравнению с нефтяными и синтетическими маслами, воздействие которых на человека и окружающую среду в большинстве случаев неизвестно экологические последствия от использования методов генной инженерии также далеко не ясны. [c.42]
Речь идет о генной инженерии, когда изменение химсостава в желаемом для техносферы направлении осуществляется путем изменения наследственных признаков. Основная цель здесь — повысить содержание олеиновой и мононенасыщенных кислот и снизить содержание линоленовой, способствующей протеканию полимеризации, росту вязкости и ускоренному старению масла, а также экологоопасной эруковой кислоты. [c.247]
И ча с М,, Биологический код, пер, с англ,, М., 1971. ГЕННАЯ ИНЖЕНЕРИЯ (генетич. инженерия), совокупность методов, позволяющих искусственно получать молекулы ДНК, содержащие генетич. информацию из двух или более источников любого биол. и (или) хим. происхожде-пия. Осп. этапы Г. и. I) фрагментация молекул ДНК из ра, л. источников (бактерий, вирусов, культуры клеток, ткапей, целых организмов), обычно с помощью рестрикта-зы, или искусств. х1[мико-ферментативный синтез фрагмента ДНК 2) расщепление с номогцью этого же фермента молекулы ДНК (вектора), способной автономно реплицироваться в клетке (обычно это плазмидная или вирусная ДНК) 3) соединение фрагментов ДНК с вектором в еди- [c.125]
Ведущая роль в применении генно-инженерных растений принадлежит США [25]. В основе генной инженерии растений лежат методы культивирования клеток и тканей растений in vitro (в пробирке) и возможность регенерации целого растения из отдельных клеток. [c.248]
По мнению ряда специалистов, биотехнология представляет собой по сути связующее звено между биологизацией и экологизацией материального производства, поскольку она по своей природе глубоко экологична [26]. Вряд ли можно полностью согласиться с этим утверждением. Негативные стороны генной инженерии подробно рассмотрены в главе 4. Кроме того, следует учесть, что экологические последствия от размножения микроорганизмов в большом количестве еще не оценены. Области применения каж- [c.390]
ГЕННАЯ ИНЖЕНЕРИЯ — часть биотехнологии (см.) любые манипуляции с чистой ДНК с целью получения организмов с направлсшю измененной наследственностью (чаще всего — это бактерии, вырабатывающие или перерабатывающие нужные человеку вещества). [c.399]
Рестриктазы II типа очень широко испатьзуются в методах генной инженерии для физического картирования ДНК и для выделения участков ДНК в составе того или иного рестрикционного фрагмента. Поэтому в течение ряда лет велся широкий поиск рестриктаз [c.130]
М, б. имеет болыпое практич. значение как теоретич. основа южных разделов медицины (вирусологии, иммунологии, 0НКОЛО1ИИ и др.), с. х-ва (направленное и контролируемое изменение наследств, аппарата животных и растений для по. гучения высокопродуктивных пород и сортов) и совр. биотехнологии (генная инженерия, клеточная инженерия и т. п.). [c.347]
Разумеется, без достаточных экспериментальных подтверждений мы не можем настаивать на таком объяснении, однако это и не так уже существенно. Важен надежно установленный экспериментальный факт для элюции нативной ДНК (или двунитевой РНК, а также гибридных молекул ДНК—РНК) с оксиапатита требуется почти вдвое более высокая концентрация фосфатного буфера, чем для элюции денатурированной ДНК или однонитевой РНК. Это обстоятельство открыло возможность быстрого и надежного отделения двунитевых молекул нуклеиновых кислот от однонитевых, что сыграло очень важную роль как в изучении структуры генома (исследования кинетики ренатурации), так и в развитии современных методов генной инженерии (гибридизация молекул НК и др.). Как и в случае кислых белков, присутствие даже относительно высоких концентраций неорганических солей в элюирующем буфере практически не сказывается на процессах элюции одно- и двунитевых молекул НК с оксиапатита. Вместе с тем, варьируя концентрацию Na l или КС1 в буфере, можно управлять изменением конформации самих нуклеиновых кислот, а также характером их гибридизации (например, отделять истинные , полноценные, гибридные молекулы от несовершенных гибридов ). [c.230]
Как уже упоминалось, ПК в качестве лигандов могут обладать как групповой специфичностью (для белков хроматина, факторов управления трансляцией, нуклеаз и др.), так и индивидуальной (для индивидуальных мРНК, белков-регуляторов транскрипции и др.). Во втором случае на аффинном сорбенте должны быть закреплены вполне определенные участки генома. Это стало возмолшым после создания способов отбора и наработки в достаточных количествах строго идентичных фрагментов ДНК методами генной инженерии. В последнее время возникла еще одна область использования иммобилизованных НК — в качестве праймеров матричного синтеза. Эти приложения предъявляют разные требования к характеру фиксации НК на матрице. В первом случае расположение точек закрепления на молекуле НК может быть произвольным, во втором определенные и достаточно протяженные участки полинуклеотидной цепи должны быть свободны для комплементарного взаимодействия, а в третьем закрепление НК на матрице желательно осуществить лишь по одному определенному концу молекулы. Что же касается возможности реакций с активированными матрицами, то вдоль всей молекулы НК во множестве располагаются химически эквивалентные группы аминогруппы нуклеиновых оснований, гидроксилы сахаров и др. В особом положении находится только концевой остаток фосфорной кислоты или сахара. [c.387]
Выбранный фрагмент ДНК (в данном случае из генома дрозофилы) встраивали в плазмиду, которую отбирали, размножали и очищали методами генной инженерии (1). Затем ее линеаризировали обработкой рестриктазой, не затрагивающей встроенный фрагмент (2). После этого с помощью ограниченного гидролиза экзо-нуклеазой III (30 мин при 0°) удаляли с З -концов каждой из нитей около 300 оснований (3). Обработанную таким образом ДНК сажали на активированную по методу Нойеса и Старка (см. выше) л-амино-бензилоксиметилцеллюлозу. Ковалентное присоединение происходило по однопитевым концам молекулы (через Се гуаниловых остатков). Так получали сорбент с экспонированными, заранее выбранными фрагментами двунитевой ДНК (4). [c.425]
Активность неспецифичных Н. подавляется этилендиаминтетрауксусной к-той. Для нек-рых Н. обнаружены ингибиторы белковой природы. Локализация в клетках и функцион. роль Н. не изучены. Н. применяют в препаративной биохимии и генной инженерии Н. из бактерий Sarratia mar es ens используют для лечения вирусных заболеваний пчел. [c.296]
Нарушения О.в. у микроорганизмов, вызванные изменениями в составе субстратов или полученные в результате мутагенеза, широко используют в практич. целях. Так, добавляя в питат. среду дрожжей сульфит натрия, удается переключить алкогольное брожение на глицериновое и создать на этой основе биотехнологию получения глицерина. В микробиол. промчгги широко используют полученные селекцией штаммы микроорганизмов-суперпродуценты отдельных аминокислот, антибиотиков и др. Методы генной инженерии позволяют избирательно изменять наследственный аппарат клеток и благодаря этому целенаправленно воздействовать на структуру и динамику О.в. у организмов. [c.318]
Соединение высокопроизводит. твердофазного синтеза П. с разделяющими способностями препаративной ВЭЖХ обеспечивает выход на качественно новый уровень хим. синтеза П, что, в свою очередь, благотворно влияет на развитие разл. областей биохимии, мол. биологии, генной инженерии, биотехнологии, фармакологии и медицины. [c.471]
За последние 20 лет X. т. претерпела колоссальные изменения в научном и прикладном отношении. В совр. условиях массовые продукты основной химии уступают место продуктам тонкого хим. синтеза, все чаще условия процессов и качество продуктов определяют св-ва поверхности раздела фаз, отдельных частиц, а не объема. От макроструктуры в-в переходят к управлению микроструктурой неструктурированная среда вытесняется структурированной (мицелла, кластер) энергию вводят направленно с помощью лазера с заданной частотой излучения, в ввде плазмы, электрич. поля вместо нормального состояния фаз используют суперкритич. флюиды, жвдкие кристаллы. Появились новые области X, т. биотехнологая, генная инженерия, конструирование материалов на мол. уровне (нанотехнология). [c.241]
Химический энциклопедический словарь (1983) -- [ c.125 ]Принципы структурной организации белков (1982) -- [ c.228 ]
Общая органическая химия Т.10 (1986) -- [ c.213 ]
Органический синтез (2001) -- [ c.478 ]
Принципы структурной организации белков (1982) -- [ c.228 ]
Биоорганическая химия (1987) -- [ c.249 , c.251 , c.269 , c.298 , c.350 , c.426 , c.428 , c.725 ]
Органическая химия (2001) -- [ c.561 ]
Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.123 ]
Возможности химии сегодня и завтра (1992) -- [ c.43 , c.70 , c.117 , c.119 , c.121 ]
Общая микробиология (1987) -- [ c.19 ]
Экологическая биотехнология (1990) -- [ c.0 ]
Биохимический справочник (1979) -- [ c.44 ]
Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.326 ]
Биохимия человека Т.2 (1993) -- [ c.35 ]
Генетика человека Т.3 (1990) -- [ c.19 , c.61 , c.143 , c.163 ]
Биохимия человека Том 2 (1993) -- [ c.35 ]
Генетика с основами селекции (1989) -- [ c.221 , c.267 ]
Физиология растений Изд.3 (1988) -- [ c.408 , c.410 ]
Что если Ламарк не прав Иммуногенетика и эволюция (2002) -- [ c.188 ]
Молекулярная биология клетки Сборник задач (1994) -- [ c.40 , c.41 , c.42 , c.43 , c.44 ]
Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.326 ]
Биологическая химия (2004) -- [ c.171 , c.172 , c.174 , c.419 ]
chem21.info
Многие вещи нам непонятны не потому, что наши понятия слабы; но потому, что сии вещи не входят в круг наших понятий.
Козьма Прутков
Результаты исследования молекулярной генетики и молекулярной биологии являются иллюстрацией лидирующего состояния биологии в современном естествознании. На их базе возникли новые научные направления, такие как генная инженерия и биотехнология.
Генетическая инженерия — эта система экспериментальных приемов, позволяющих конструировать искусственные генетические структуры в виде гибридных молекул ДНК. Суть генетической инженерии сводится к переносу в организм чужеродных генов, которые могут сообщать им полезные свойства. Геном является определенный участок молекулы ДНК, который хранит и передает наследственную информацию. Молекулы ДНК представляют собой длинные полимерные молекулы — по-линуклеотиды, состоящие из мономерных звеньев. Элементарными частицами генетического материала являются мономерные звенья полимерной молекулы ДНК. Гены содержат в себе такую информацию, код или своего рода программу, по указанию которой происходит синтез белков в клетках данного организма. На линейной молекуле ДНК отдельные гены разделены регулятор-ными участками, и они не могут перекрываться. Молекулу ДНК
363
можно разбить на непрерывные участки (гены), на каждом из которых записана информация о последовательности аминокислот одного белка. Если найти методы, позволяющие резать ДНК на точно необходимые куски, отделять разные куски друг от друга, затем их сшивать по усмотрению экспериментатора и переносить их в клетку другого организма, то можно заставить эту клетку синтезировать не свойственный ему (т. е. чужой) белок.
Итак, процедуры генетической инженерии сводятся к тому, что из набора фрагментов ДНК, содержащих нужный ген, собирают гибридную структуру, которую затем вводят в клетку. Введенная генетическая информация экспрессируется, что приводит к синтезу нового продукта. Таким образом, вводя в клетку новую генетическую информацию в виде гибридных молекул ДНК, можно получить измененный организм. Синтезирование нужных белков, гормонов, вакцин и других необходимых для медицины и сельского хозяйства соединений методами молекулярной биологии и есть основная задача генной инженерии. Сложной задачей здесь является поиск методов резки молекулы ДНК с точностью до миллиардных долей метра, с тем чтобы получить все одинаковые молекулы в заданном образце строго в одних и тех же местах. После долгих исследований ученые установили, что в роли такого высокоточного скальпеля могут быть применены ферменты рестриктазы. Они узнают самые разные последовательности нуклеотидов и разрезают их в нужном месте. Полученные куски затем сшивают с помощью другого фермента, называемого ДНК-лигазой, способного залечивать разрывы в цепи ДНК. Таким путем, искусственно можно получить какие угодно комбинации генов, которые в естественных условиях нельзя реализовать из-за существующих барьеров на межвидовое скрещивание.
Полученная путем перетасовки генов гибридная молекула ДНК должна размножаться в составе живой клетки и менять ее генетические свойства. В этом особая роль принадлежит плаз-мидам. Оказывается, в клетках бактерий, дрожжей и высших организмов кроме основных молекул ДНК, не переходящих из одной клетки в другую, присутствуют еще и маленькие молеку-
364
лы ДНК — плазмиды, которыми клетки легко обмениваются. Если из бактерий извлечь плазмиды и встроить в них фрагменты чужой молекулы ДНК, а затем залечить раны и смешать полученные гибридные плазмиды с бактериальными клетками, то такие гибридные плазмиды окажутся биологически активными и будут размножаться. Далее в результате размножения гибридных плазмид с бактерией-хозяйкой удается многократно умножить (тиражировать) встроенный чужеродный фрагмент молекулы ДНК. Этот прием генной инженерии получил название клонирования. Метод клонирования с помощью плазмид дает молекулярной биологии уникальную возможность перетасовки генов бактерий, вирусов, дрожжей и высших организмов — человека и животных.
Еще несколько лет назад ученые задавали вопрос, можно ли создать сорта, сбалансированные по составу аминокислот, устойчивые к холоду, засухе, не поражаемые вредителями. Сегодня можно с уверенностью утверждать, что такие трансгенные растения уже вышли в поле. Областей применения трансгенных растений довольно много. На уровне лабораторных экспериментов ведутся работы по получению растений, устойчивых к холоду, тяжелым металлам, повышенному содержанию солей и др. Трансгенные растения, устойчивые к гербицидам (химическим соединениям, которые используют для борьбы с сорняками), к вирусам, растения с повышенным содержанием масел и незаменимых аминокислот уже выращивают на миллионах гектаров. Не менее интересен и другой аспект работ — получены трансгенные растения с измененными декоративными свойствами. Поскольку основные трансгенные формы кукурузы, сои, хлопчатника с устойчивостью к гербицидам и насекомым хорошо себя зарекомендовали, есть все основания ожидать, что площадь под генно-инженерными растениями в будущем увеличится.
Среди последних достижений инженерной, или конструктивной, биологии следует упомянуть успешное клонирование млекопитающих (овцы, свиньи, коровы), создание первых искусственных хромосом человека, создание трансгенных мышей.
365
Если в плазму встроить ген (фрагмент ДНК) человека, то такая плазмида внутри бактерии или дрожжей начинает вырабатывать белок, отвечающий человеческому гену. Разработка технологии, заставляющей бактериальные или дрожжевые клетки синтезировать в больших количествах необходимые человеку для различных целей белки, положило начало новой биотехнологической эре.
Услугами генной инженерии особенно успешно пользуются фармацевты, для которых этот метод дает сравнительно дешевые, но жизненно необходимые гормоны, такие как инсулин, интерферон, гормоны роста и другие, имеющие белковую природу. По заказу фармацевтов генными инженерами налажено производство человеческого гормона инсулина (вместо ранее применяемого животного инсулина), играющего важную роль в борьбе с сахарным диабетом. Методом генной инженерии получают также достаточно дешевый и чистый человеческий интерферон — белок, обладающий универсальным антивирусным действием, антиген вируса гепатита В.
Другими важнейшими областями, в которых успешно применяются достижения генной инженерии, являются медицина и сельское хозяйство. На наших глазах современная биология превратилась в науку, которая дала начало технологиям, преобразившим производство. Биотехнология стала реальной производительной силой. Питание и медицинское обслуживание возрастающего быстрыми темпами населения Земли представляют собой наиболее важные проблемы, стоящие перед человечеством, и решать их скорее всего придется методами биотехнологии.
Производство и применение вакцин против вирусных заболеваний позволили медиками ликвидировать полностью эпидемии чумы и оспы, от которых раньше умирали миллионы людей. Метод генной инженерии, в отличие от других методов, позволяет получить абсолютно безвредную (не содержащую инфекционного начала) вакцину. Ведутся также работы по производству вакцин от гриппа, гепатита и других вирусных заболеваний человека.
366
В настоящее время для производства интерферона и гормона роста в качестве источника плазмидов вместо бактерий широко применяются также дрожжи, которые на эволюционной лестнице стоят где-то между бактериями и высшими организмами. Еще одной задачей, успешно решаемой в настоящее время биотехнологией, является производство белка, содержащего незаменимую аминокислоту лизин, и используемого в качестве полноценных кормовых добавок для животных.
В биотехнологии применяются не только методы генной инженерии, но и методы клеточной инженерии. Суть метода клеточной инженерии сводится к следующему: из организма искусственно выделяют клетки, которые затем размножают в специально подобранных питательных средах. Полученные таким путем клеточные культуры используются для производства ценных лекарственных веществ и для гибридизации клеток, которые невозможно воспроизвести обычным половым путем. Методом гибридизации соматических клеток получены новые формы культурных растений (томаты, картофель). Гибридизация же животных клеток (например, раковых клеток и клеток крови — лимфоцитов) применяется для выработки ценных медицинских препаратов.
studfiles.net
Федеральное государственное бюджетное образовательное
учреждение высшего профессионального образования
«Оренбургский государственный аграрный университет»
Реферат на тему:
Выполнил: Мамбетов Азамат
студент 2 курса
факультета агротехнологий и лесного дела
отделения технологии
22 А группа
Проверил: Гарипова Р. Ф.
Оренбург 2013
Содержание
Введение
1 Генная инженерия
1.1 История генной инженерии
1.2 Среда и наследственность
1.3 О влиянии генов на человека
Заключение
Список литературы
Введение
Важной составной частью биотехнологии является генетическая инженерия. Родившись в начале 70-х годов, она добилась сегодня больших успехов. Методы генной инженерии преобразуют клетки бактерий, дрожжей и млекопитающих в "фабрики" для масштабного производства любого белка. Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средств.
Генетическая инженерия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.
Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.
Наследственность – присущее всем организмам свойство сохранять и передавать потомству характерные для них признаки, особенности строения, функционирования и индивидуального развития.
Все дело в генах, с завистью говорим мы, объясняя чей-то блестящий талант: «У них в роду все такие способные!» Все дело в генах, с горечью говорим мы, видя, как человек страдает от наследственного недуга: «У них на роду написано болеть!»
Век биологии – век новых сражений за истину.
Одни и те же вопросы, задаваемые уже не первый год, сближают душу и тело и тут же непоправимо разделяют их. Неужели гены полностью и изначально программируют нашу жизнь? Неужели мы не способны измениться вообще? Или же наше поведение можно объяснить влиянием внешней среды, умением чему-то учиться? Итак, может ли человек развиваться, или все предопределено от века?
На протяжении всего XX столетия ученые по-разному отвечали на эти важнейшие вопросы бытия.
За последние десятилетия ученые с известной степенью вероятности установили в каких именно хромосомах находятся гены, мутация которых вызывает ту или иную болезнь. Однако замена «дефектных» генов на здоровые не только крайне сложна, но и не очень эффективна – одно и то же заболевание бывает вызвано разными мутациями, из-за чего ход болезни часто не поддается прогнозированию.
Актуальность данной темы обусловлена тем, что за сто лет своего существования генетика добралась до человека, и теперь уже она его не оставит. Она нарисует его индивидуальный генетический портрет, даст ему в руки миниатюрный прибор, в котором будет собрана вся его наследственная информация. Каждый получит предупреждение: в каком возрасте болезнь Альцгеймера приступит к разрушению его памяти, насколько велик для него риск заболеть раком или диабетом. Генетика порождает новую медицину – к этому и стремились сто лет назад ее основатели.
Целью данной работы является изучение генной инженерии.
Исследование данной работы предопределило ряд задач:
Рассмотреть историю генной инженерии.
Проанализировать влияние генов на человека.
В качестве теоретической базы были использованы работы Ж. Бейсона, А. Волкова и других авторов.
studfiles.net
ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ, совокупность методов биохимии и молекулярной генетики, с помощью которых осуществляется направленное комбинирование генетической информации любых организмов. Генетическая инженерия позволяет преодолевать природные межвидовые барьеры, препятствующие обмену генетической информацией между таксономически удалёнными видами организмов, и создавать клетки и организмы с не существующими в природе сочетаниями генов, с заданными наследуемыми свойствами. Главным объектом генно-инженерного воздействия является носитель генетической информации - дезоксирибонуклеиновая кислота (ДНК), молекула которой обычно состоит из двух цепей. Строгая специфичность спаривания пуриновых и пиримидиновых оснований обусловливает свойство комплементарности - взаимного соответствия нуклеотидов в двух цепях. Создание новых сочетаний генов оказалось возможным благодаря принципиальному сходству строения молекул ДНК у всех видов организмов, а фактическая универсальность генетические кода обеспечивает экспрессию чужеродных генов (проявление их функциональной активности) в любых видах клеток. Этому способствовало также накопление знаний в области химии нуклеиновых кислот, выявление молекулярных особенностей организации и функционирования генов (в том числе установление механизмов регуляции их экспрессии и возможности подчинения генов действию «чужих» регуляторных элементов), разработка методов секвенирования ДНК, открытие полимеразной цепной реакции, позволившей быстро синтезировать любой фрагмент ДНК. Важными предпосылками для появления генетической инженерии явились: открытие плазмид, способных к автономной репликации и переходу из одной бактериальной клетки в другую, и явления трансдукции - переноса некоторых генов бактериофагами, что позволило сформулировать представление о векторах: молекулах - переносчиках генов. Огромное значение в развитии методологии генетической инженерии сыграли ферменты, участвующие в преобразовании нуклеиновых кислот: рестриктазы (узнают в молекулах ДНК строго определённые последовательности - сайты - и «разрезают» двойную цепь в этих местах), ДНК-лигазы (ковалентно связывают отдельные фрагменты ДНК), обратная транскриптаза (синтезирует на матрице РНК комплементарную копию ДНК, или кДНК) и др. Только при их наличии создание искусственных структур стало технически выполнимой задачей. Ферменты используются для получения индивидуальных фрагментов ДНК (генов) и создания молекулярных гибридов - рекомбинантных ДНК (рекДНК) на основе ДНК плазмид и вирусов. Последние доставляют нужный ген в клетку хозяина, обеспечивая там его размножение (клонирование) и образование конечного продукта гена (его экспрессию).
Принципы создания рекомбинантных молекул ДНК. Термин «генетическая инженерия» получил распространение после того, как в 1972 году П. Бергом с сотрудниками впервые была получена рекомбинантная ДНК, представлявшая собой гибрид, в котором были соединены фрагменты ДНК бактерии кишечной палочки, её вируса (бактериофага λ) и ДНК обезьяньего вируса SV40 (рис. 1). В 1973 году С. Коэн с сотрудниками использовали плазмиду pSC101 и рестриктазу (EcoRI), которая разрывает её в одном месте таким образом, что на концах двухцепочечной молекулы ДНК образуются короткие комплементарные одноцепочечные «хвосты» (обычно 4-6 нуклеотидов). Их назвали «липкими», поскольку они могут спариваться (как бы слипаться) друг с другом. Когда такую ДНК смешивали с фрагментами чужеродной ДНК, обработанной той же рестриктазой и имеющей такие же липкие концы, получались новые гибридные плазмиды, каждая из которых содержала, по крайней мере, один фрагмент чужеродной ДНК, встроенной в EcoRI-сайт плазмиды (рис. 2). Стало очевидным, что в такие плазмиды можно встраивать фрагменты разнообразных чужеродных ДНК, полученных как из микроорганизмов, так и из высших эукариот.
Основной современной стратегии получения рекДНК сводится к следующему:
1) в ДНК плазмиды или вируса, способных размножаться независимо от хромосомы, встраивают принадлежащие другому организму фрагменты ДНК, содержащие определённые гены или искусственно полученные последовательности нуклеотидов, представляющие интерес для исследователя;
2) образующиеся при этом гибридные молекулы вводят в чувствительные прокариотические или эукариотические клетки, где они реплицируются (размножаются, амплифицируются) вместе со встроенными в них фрагментами ДНК;
3) отбирают клоны клеток в виде колоний на специальных питательных средах (или вирусов в виде зон просветления - бляшек на слое сплошного роста клеток бактерий или культур тканей животных), содержащие нужные типы молекул рекДНК и подвергают их разностороннему структурно-функциональному изучению. Для облегчения отбора клеток, в которых присутствует рекДНК, используют векторы, содержащие один и более маркеров. У плазмид, например, такими маркерами могут служить гены устойчивости к антибиотикам (отбор клеток, содержащих рекДНК, проводят по их способности расти в присутствии того или иного антибиотика). РекДНК, несущие нужные гены, отбирают и вводят в реципиентные клетки. С этого момента начинается молекулярное клонирование - получение копий рекДНК, а следовательно, и копий целевых генов в её составе. Только при возможности разделения всех трансфицированных или инфицированных клеток каждый клон будет представлен отдельной колонией клеток и содержать определённую рекДНК. На заключительном этапе производится идентификация (поиск) клонов, в которых заключён нужный ген. Она основывается на том, что вставка в рекДНК детерминирует какое-то уникальное свойство содержащей его клетки (например, продукт экспрессии встроенного гена). В опытах по молекулярному клонированию соблюдаются 2 основных принципа: ни одна из клеток, где происходит клонирование рекДНК, не должна получить более одной плазмидной молекулы или вирусной частицы; последние должны быть способны к репликации.
В качестве векторных молекул в генетической инженерии используется широкий спектр плазмидных и вирусных ДНК. Наиболее популярны клонирующие векторы, содержащие несколько генетических маркеров и имеющие по одному месту действия для разных рестриктаз. Таким требованиям, например, лучше всего отвечает плазмида pBR322, которая была сконструирована из исходно существующей в природе плазмиды с помощью методов, применяемых при работе с рекДНК; она содержит гены устойчивости к ампициллину и тетрациклину, а также по одному сайту узнавания для 19 разных рестриктаз. Частным случаем клонирующих векторов являются экспрессирующие векторы, которые наряду с амплификацией обеспечивают правильную и эффективную экспрессию чужеродных генов в реципиентных клетках. В ряде случаев молекулярные векторы могут обеспечивать интеграцию чужеродной ДНК в геном клетки или вируса (их называют интегративными векторами).
Одна из важнейших задач генетической инженерии - создание штаммов бактерий или дрожжей, линий клеток тканей животных или растений, а также трансгенных растений и животных (смотри Трансгенные организмы), которые обеспечивали бы эффективную экспрессию клонируемых в них генов. Высокий уровень продукции белков достигается в том случае, если гены клонируются в многокопийных векторах, т.к. при этом целевой ген будет находиться в клетке в большом количестве. Важно, чтобы кодирующая последовательность ДНК находилась под контролем промотора, который эффективно узнаётся РНК-полимеразой клетки, а образующаяся мРНК была бы относительно стабильной и эффективно транслировалась. Кроме того, чужеродный белок, синтезируемый в реципиентных клетках, не должен подвергаться быстрой деградации внутриклеточными протеазами. При создании трансгенных животных и растений часто добиваются тканеспецифичной экспрессии вводимых целевых генов.
Поскольку генетический код универсален, возможность экспрессии гена определяется лишь наличием в его составе сигналов инициации и терминации транскрипции и трансляции, правильно узнаваемых хозяйской клеткой. Т. к. большинство генов высших эукариот имеет прерывистую экзон-интронную структуру, в результате транскрипции таких генов образуется матричная РНК-предшественник (пре-мРНК), из которой при последующем сплайсинге выщепляются некодирующие последовательности - интроны и образуется зрелая мРНК. Такие гены не могут экспрессироваться в клетках бактерий, где отсутствует система сплайсинга. Для того чтобы преодолеть это препятствие, на молекулах зрелой мРНК с помощью обратной транскриптазы синтезируют ДНК-копию (кДНК), к которой с помощью ДНК-полимеразы достраивается вторая цепь. Такие фрагменты ДНК, соответствующие кодирующей последовательности генов (уже не разделённой нитронами), можно встраивать в подходящий молекулярный вектор.
Зная аминокислотную последовательность целевого полипептида, можно синтезировать кодирующую его нуклеотидную последовательность, получив так называемый ген-эквивалент, и встроить его в соответствующий экспрессирующий вектор. При создании гена-эквивалента обычно учитывают свойство вырожденности генетического кода (20 аминокислот кодируются 61 кодоном) и частоту встречаемости кодонов для каждой аминокислоты в тех клетках, в которые планируется вводить этот ген, так как состав кодонов может существенно отличаться у разных организмов. Правильно подобранные кодоны могут значительно повысить продукцию целевого белка в реципиентной клетке.
Значение генетической инженерии. Генетическая инженерия значительно расширила экспериментальные границы молекулярной биологии, поскольку стало возможным вводить в различные типы клеток чужеродную ДНК и исследовать её функции. Это позволило выявлять общебиологические закономерности организации и выражения генетической информации в различных организмах. Данный подход открыл перспективы создания принципиально новых микробиологических продуцентов биологически активных веществ, а также животных и растений, несущих функционально активные чужеродные гены. Многие ранее недоступные биологически активные белки человека, в том числе интерфероны, интерлейкины, пептидные гормоны, факторы крови, стали нарабатываться в больших количествах в клетках бактерий, дрожжей или млекопитающих и широко использоваться в медицине. Более того, появилась возможность искусственно создавать гены, кодирующие химерные полипептиды, обладающие свойствами двух или более природных белков. Всё это дало мощный импульс к развитию биотехнологии.
Главными объектами генетической инженерии являются бактерии Escherichia coli (кишечная палочка) и Bacilltis subtilis (сенная палочка), пекарские дрожжи Saccharomices cerevisiae, различные линии клеток млекопитающих. Спектр объектов генно-инженерного воздействия постоянно расширяется. Интенсивно развиваются направления исследований по созданию трансгенных растений и животных. Методами генетической инженерии создаются новейшие поколения вакцин против различных инфекционных агентов (первая из них была создана на основе дрожжей, продуцирующих поверхностный белок вируса гепатита В человека). Большое внимание уделяется разработке клонирующих векторов на основе вирусов млекопитающих и использованию их для создания живых поливалентных вакцин для нужд ветеринарии и медицины, а также в качестве молекулярных векторов для генной терапии раковых опухолей и наследственных заболеваний. Разработан метод прямого введения в организм человека и животных рекДНК, направляющих продукцию в их клетках антигенов различных инфекционных агентов (ДНК-вакцинация). Новейшим направлением генетической инженерии является создание съедобных вакцин на основе трансгенных растений, таких как томаты, морковь, картофель, кукуруза, салат и др., продуцирующих иммуногенные белки возбудителей инфекций.
Опасения, связанные с проведением генно-инженерных экспериментов. Вскоре после первых успешных экспериментов по получению рекДНК группа учёных во главе с П. Бергом предложила ограничить проведение ряда генно-инженерных опытов. Эти опасения основывались на том, что свойства организмов, содержащих чужую генетическую информацию, трудно предсказать. Они могут приобрести нежелательные признаки, нарушить экологическое равновесие, привести к возникновению и распространению необычных заболеваний человека, животных, растений. Кроме того, отмечалось, что вмешательство человека в генетический аппарат живых организмов аморально и может вызвать нежелательные социальные и этические последствия. В 1975 году эти проблемы обсуждались на международной конференции в Асиломаре (США). Её участники пришли к заключению о необходимости продолжения использования методов генетической инженерии, но при обязательном соблюдении определённых правил и рекомендаций. Впоследствии эти правила, установленные в ряде стран, были существенно смягчены и свелись к приёмам, обычным в микробиологических исследованиях, созданию специальных защитных устройств, препятствующих распространению биологических агентов в окружающей среде, использованию безопасных векторов и реципиентных клеток, не размножающихся в природных условиях.
Часто под генетической инженерией понимают только работу с рекДНК, а как синонимы генетической инженерии используются термины «молекулярное клонирование», «клонирование ДНК», «клонирование генов». Однако все эти понятия отражают содержание лишь отдельных генно-инженерных операций и поэтому не эквивалентны термину «генетическая инженерия». В России как синоним генетической инженерии широко используется термин «генная инженерия». Однако смысловое содержание этих терминов различно: генетическая инженерия ставит целью создание организмов с новой генетической программой, в то время как термин «генная инженерия» поясняет, как это делается - путём манипуляции с генами.
Лит.: Щелкунов С. Н. Клонирование генов. Новосиб., 1986; он же. Генетическая инженерия. 2-е изд., Новосиб., 2004; Уотсон Дж., Туз Дж., Курц Д. Рекомбинантные ДНК. М., 1986; Клонирование ДНК. Методы. М., 1988; Новое в клонировании ДНК: Методы. М., 1989.
С. Н. Щелкунов.
knowledge.su
Пример видео 3 | Пример видео 2 | Пример видео 6 | Пример видео 1 | Пример видео 5 | Пример видео 4 |
Администрация муниципального образования «Городское поселение – г.Осташков»