В чем заключаются главные особенности дыхания бактерий. Дрожжи анаэробы или аэробы


Дыхание дрожжей

Опубликовано в Словарь

Дыхание дрожжей, сложный процесс биологического окисления, происходящий в клетке дрожжей и сопровождающийся выделением энергии. По типу дыхания дрожжи относятся к факультативным анаэробам. Процесс дыхания дрожжей состоит из ряда последовательных окислительно-восстановительных реакций между водородом, отщепляющимся от карбоновых кислот в цикле трикарбоновых кислот, и молекулярным кислородом. Окисление пировиноградной кислоты происходит за счет кислорода воды и отщепления атомов водорода (СН3СОСО-ОН + 3h3O->ЗСO2 + 10Н+). Затем водород переносится на дыхательную цепь дрожжей, которая сходна с таковой высших растений. Она включает ряд дегидрогеназ, связанных с НАД-Н (пируват-, изоцитрат-, а-кетоглутарат-, лактат- и малатдегидрогеназы), флавопротеиды, кофермент Q (убихинон) и цитохромы. Особенностью дыхательной цепи дрожжей является наличие митохондриальной НАД — зависимой алкогольдегидрогеназы, катализирующей окисление этилового спирта, помимо алкогольдегидрогеназы I и I I, локализированной в цитоплазме. В процессе аэробного дыхания дрожжи, окисляя один моль глюкозы, получают энергию, равную 2817 кДж, из которой только 10—25% используют для своих нужд; остальная энергия выделяется в окружающую среду в виде тепла. Именно поэтому температуpa бродящего сусла выше температуры окружающей среды. В анаэробных условиях дрожжи получают энергию за счет бескислородного дыхания, т. е. брожения. Брожение спиртовое — один из путей анаэробного превращения углеводов; при этом глюкоза практически полностью расщепляется дрожжами до этилового спирта и СO2 с одновременным накоплением высших спиртов и др. продуктов обмена и выделением незначительной части энергии. С энергетической точки зрения более выгодным является процесс аэробного окисления углеводов, т.е. дыхание, поскольку при брожении выделяется почти в 28 раз меньше энергии. Однако с технологической точки зрения следует ограничить процесс дыхания и функцию размножения дрожжей и усилить их бродильную активность. У дрожжей анаэробное превращение глюкозы есть обязательная первая стадия, за которой может следовать аэробная фаза — дыхание, интенсивность которой находится в прямой зависимости от условий культивирования. В виноделии дыхание дрожжей в слабой степени участвует только в начале процесса брожения, но это участие очень важно, т. к. оно обусловливает размножение дрожжей. Пока в сусле имеется кислород, дрожжи дышат, но не бродят; брожение начинается тогда, когда весь кислород израсходован. При аэробном сбраживании малосахаристых сред брожение угнетается дыханием и при этом значительно снижается потребление глюкозы (см. Пастера эффект). Торможение ферментативного разложения сахара происходит вследствие использования кислорода, т. е. вследствие дыхания дрожжей. Аэрация высокосахаристых сред вызывает противоположный сдвиг энергетического обмена у дрожжей: тормозит дыхание и активизирует брожение (см. Крэбтри эффект). При аэробном сбраживании высокосахаристых сред виноградного сусла установлен альдегидный эффект. Возможность последнего обусловлена наличием у дрожжей пространственно разобщенных ферментов гликолиза (в цитоплазме) и окислит, комплекса (в митохондриях). Эта особенность винных дрожжей использована для ускорения процесса созревания вин на этапе брожения сусла путем его аэрации, в технологии хереса глубинным способом и для интенсификации процесса созревания крепких вин типа портвейна и мадеры.При развитии клеток дрожжей в анаэробных условиях происходит резкая перестройка энергетического обмена, митохондрии превращаются в недифференцированные структуры, называемые промитохондриями, снижается дыхательная активность. Отсутствие дыхания компенсируется усилением гликолиза, который становится основным источником энергии клетки. Бродильная функция клеток дрожжей при этом достигает максимума. Установлено, что бродильная активность винных дрожжей, развивающихся при брожении сусла под избыточным давлением СO2 до 0,5 МПа, на 25% выше активности дрожжей, развивающихся при брожении в аэробных условиях. Скорость размножения низкая, что свидетельствует о специфическом действии высоких концентраций углекислого газа на функцию почкования дрожжей. Наблюдается нарушение корреляции между скоростью размножения и скоростью утилизации сахаров из среды, что ведет к обогащению среды вторичными продуктами и повышенному содержанию в ней восстановленных веществ. Функциональная перестройка клеток наступает и при выращивании дрожжей на неполноценной питательной среде или в среде с несбалансированным содержанием витаминов, микроэлементов и др. питательных веществ. Избыток витамина B1 приводит к перестройке дрожжей даже в аэробных условиях культивирования на бродильный тип. Недостаток витамина В3 резко снижает дыхательную активность, и это изменение передается по наследству. Добавление в среду эргостерина и насыщенных жирных кислот (в форме твин-80) способствует росту дрожжей в анаэробных условиях.

Литература: Бурьян Н. И., Тюрина Л. В. Микробиология виноделия. — Москва, 1979; Нудель Л. Ш., Короткевич А. В. Микробиология и биохимия вина. — Москва, 2000.                    

Метки:дрожжи, окисление, процесс
Ещё по теме:

eniw.ru

Аэробные и анаэробные дрожжи - Справочник химика 21

    Микроорганизмы, имеющие факультативно-анаэробное дыхание, в своих клетках содержат, кроме дегидраз, еще оксидазы и ферменты, активирующие кислород, т. е. ферменты, свойственные и аэробным микробам. Дрожжи относятся к группе факультативно-анаэробных микроорганизмов, т. е. им свойственно и анаэробное и аэробное дыхание, но последнее выражено слабее. При анаэробном дыхании дрожжи расходуют на дыхание значительно больше энергетического материала (сахара), чем при аэробном дыхании. [c.529]     Многочисленные микроорганизмы, (аэробные и анаэробные), дрожжи. и грибы Некоторые микробы (аэробные) и плесени [c.72]

    Г. АЭРОБНЫЕ И АНАЭРОБНЫЕ ДРОЖЖИ [c.180]

    Микроорганизмы, которые погибают в присутствии кислорода, называют облигатными (строгими) анаэробами. Те микроорганизмы, которые могут существовать в аэробных и анаэробных условиях, называют факультативными (условными) анаэробами. Последние могут изменять тип дыхания в зависимости от среды (дрожжи). Анаэробные дыхательные процессы называют брожением. Это явление используется человеком для получения с помощью микроорганизмов ряда ценных продуктов этилового и бутилового спиртов, масляной, молочной и уксусной кислот и т. п. [c.16]

    В 1860 г. Луи Пастер установил, что брожение не спонтанный процесс, а результат жизни в отсутствие воздуха ). Он заметил, что в анаэробных условиях дрожжи сбраживают значительно больше сахара, чем в аэробных, и что анаэробное брожение необходимо для жизни [c.344]

    Особенности производства и потребления готовой продукции. Дрожжевое производство основано на способности дрожжевых клеток (микроорганизмов) расти и размножаться. В основе технологии хлебопекарных дрожжей на дрожжевых заводах лежат биохимические процессы, связанные с превращением питательных веществ культуральной среды при активной аэрации в клеточное вещество дрожжей. При аэрации дрожжи окисляют сахар питательной среды до воды и диоксида углерода (аэробное дыхание). Вьщелившаяся при этом тепловая энергия используется дрожжами для синтеза клеточного вещества и обменных процессов. В аэробных условиях в субстрате накапливаются значительно большие биомассы, чем при анаэробном дыхании. [c.85]

    В результате аэробного и анаэробного распада углеводов дрожжами доставляется энергия и обеспечиваются процессы синтеза биомассы различными предшественниками. Из щавелево-уксусной и а-кетоглутаровой кислот в результате восстановительного аминирования и переаминирования образуются соответственно аспарагиновая и глутаминовая кислоты. Синтез этих двух аминокислот занимает главное место в синтезе белков из углеводов. [c.1051]

    Форма и строение митохондрий у различных микроорганизмов неодинаковы. Даже у одной и той же культуры при различных условиях и фазах роста форма и величина митохондрий меняется. В клетках дрожжей, перенесенных из аэробных условий в анаэробные, митохондрии теряют выраженную форму и образуются мембраны неопределенной формы. В бактериях функцию митохондрий выполняют особые образования цитоплазматической мембраны — мезосомы. Следовательно, в клетках бактерий аналогами митохондрий являются мезосомы. Как число митохондрий, так и число мезосом меняется, оно резко возрастает перед процессом деления клетки. Мезосомы бактерий специализируются в выполнении различных функций. Некоторые из них [c.19]

    Способность дрожжей к жизнедеятельности в аэробных и анаэробных условиях используется в производстве. Дрожжи хорошо размножаются при достаточном количестве кислорода. Следовательно, при выращивании дрожжеподобных грибков для накопления дрожжевой массы необходимо создавать условия для аэробного дыхания их. В этом случае выделяется максимальное количество энергии, равное 674 ккал. Для получения больших [c.530]

    Принципиально важным не только для микробиологии, но и для более глубокого понимания сущности живого в его разнообразных проявлениях было открытие Л. Пастером у микроорганизмов новых типов жизни, не похожих на те, которые имеют место в мире растений и животных. В 1857 г. Пастер при изучении спиртового брожения установил, что оно — результат жизнедеятельности дрожжей без доступа кислорода. Позднее при изучении маслянокислого брожения ученый обнаружил, что возбудители брожения вообще отрицательно относятся к кислороду и могут размножаться только в условиях, исключающих его свободный доступ. Таким образом, Пастер обнаружил существование жизни без кислорода , т. е. анаэробный способ существования. Он же ввел термины аэробный и анаэробный для обозначения жизни в присутствии или в отсутствие молекулярного кислорода. [c.11]

    История исследования дрожжевого брожения. Нет смысла останавливаться здесь на курьезно звучащих в наше время спорах о природе брожения-о том, является ли образование спирта из сахара результатом химического контактного действия или же результатом деятельности живых существ. Л. Пастер окончательно разрешил вопрос о причинах брожения и установил, что дрожжи в аэробных условиях образуют из определенного количества сахара примерно в 20 раз больше клеточного вещества, чем в анаэробных. Он открыл также, что кислород подавляет брожение. Этот эффект, получивший название эффекта Пастера, приобрел С тех пор известность как один из классических примеров регуляции обмена веществ, [c.267]

    Отношение дрожжей к кислороду. Сбраживание дрожжами глюкозы-анаэробный процесс, хотя дрожжи-аэробные организмы. В анаэробных условиях брожение идет очень интенсивно, но роста дрожжей почти не происходит. При аэрации брожение ослабевает, уступая место дыханию. У некоторых дрожжей можно почти полностью подавить брожение усиленной аэрацией (эффект Пастера). Пастер открыл этот эффект более ста лет тому назад, исследуя процессы брожения при изготовлении вина. Это явление свойственно не только дрожжам, но и всем другим факультативно-анаэробным клеткам, включая клетки тканей высших животных. [c.268]

    В подготовленное таким образом сусло добавляют дрожжевые клетки. В аэробном сусле дрожжи растут и размножаются очень быстро, извлекая необходимую им энергию из некоторых присутствующих в сусле сахаров. На этой стадии спирт не образуется, потому что дрожжи, располагая достаточным количеством кислорода, окисляют образовавшийся в процессе гликолиза пируват через цикл лимонной кислоты до СО2 и Н2О. Аэробный метаболизм дрожжей обусловливает очень быстрый рост клеток, регулируется же этот метаболизм добавлением нужного количества кислорода. После исчерпания всего растворенного кислорода в чане с суслом дрожжевые клетки как факультативные анаэробы (разд. 13.1) переключаются на анаэробное использование сахаров. Начиная с этого момента дрожжи сбраживают содержапщеся в сусле сахара с образованием этанола и СО 2. Процесс брожения регулируется концентрацией образовавшегося этанола, а также величиной pH и количеством несброженного сахара. В определенный момент брожение останавливают, удаляют дрожжи, и молодое, или зеленое, пиво поступает на дображивание. Светлое пиво, которое стало теперь очень популярным, содержит меньше сахара и алкоголя, чем обычное, однако по своему аромату оно не отличается от обычных сортов. [c.470]

    В соответствии с этим направлением гидролизаты растительного сырья с большими содержаниями гексоз на первой стадии подвергаются культивированию в анаэробных условиях, при этом гексозы сбраживаются дрожжами до этилового спирта и углекислоты с последующей отгонкой этанола ректификацией. Оставшаяся послеспиртовая барда, содержащая в основном пеитозы и органические кислоты, поступает в ферментер, где в аэробных условиях дрожжи утилизируют остаточные углеводы и кислоты, давая в качестве конечного продукта кормовую биомассу. [c.98]

    Работа Л.Г Логиновой и соавторов посвящена главным образом общей характеристике явлений термофилии и термофильных бактерий, их отдельных таксономических и эколого-физиологических групп (аэробных, анаэробных, целлюлозоразрушающих, десульфурирующих метановых),особенностям их роста, процессов адаптации к повышенной температуре и практическому значению. Большое внимание в книге уделено дрожжам и термофильным грибам. Авторы обращают внимание на методы выделения грибов из различных субстратов, в частности На необходимость культивирования с целью выделения при температуре 45-50 0. [c.10]

    В попытке выйти изданной ситуации в Канаде разработан ряд подходов с применением ПАВ, преобразующих высокомолекулярные углеводороды, токсичные для микроорганизмов, в состояние, доступное воздействию микробов [269]. Эффективность действия таких ПАВ во многом зависит от характера очищаемых почв. Для повыщения эффективности биовосстановления в систему вводят био-ПАВ — метаболиты бактерий, грибков и дрожжей ведется поиск био-ПАВ, способных действовать как в аэробных, так и в анаэробных условиях, что весьма важно при очистке почв исследуются необходимые питательные добавки, способствующие образованию таких био-ПАВ. Проведенные испытания показали эффективность такого метода по сравнению с традиционным удалением почвы после ввода био-ПАВ, биопитательной смеси и перепахивания почвы в первые 6 недель быстро падало содержание высокомолекулярных и повышалось количество низкомолекулярных углеводородов через 16 недель все концентрации экспоненциально снизились почти до нуля полное восстановление произошло через 25 недель, а стоимость оказалась в 5 раз ниже, чем при удалении и переработке почвы. Таким же образом возможна очистка и в морской среде. [c.391]

    Дисахариды, из которых спиртовые дрожжи усваивают мальтозу и сахарозу, предварительно подвергаются гидролизу соответствующими ферментами дрожжей до моносахаридов. При переходе дрожжей от анаэробных условий к аэробным ослабляется их способность сбраживать глюкозу и мальтозу, а сахаразная активность повышается в 2,5 раза. Дрожжи потребляют мальтозу только при отсутствии в среде фруктозы и глюкозы. Мальтоза сбраживается почти полностью в стационарную фазу роста дрожжей. [c.200]

    Промежуточное положение занимают факультативно анаэробные микроорганизмы, например спиртовые дрожжи, которые нормально растут в среде без особого воздушного аэрирования. Метанокисляющие бактерии, используемые для биосинтеза витамина В12, не переносят присутствия кислорода, поэтому в начале процесса ферментации через культуральную жидкость продувают СО2 для деаэрации и перемешивания. При производстве хлебопекарных и кормовых дрожжей среду интенсивно аэрируют, продувая за 1 мин через каждую единицу объема среды 1—2 ед. объема воздуха, причем последний должен быть тонко диспергирован в среде. В среднем можно считать, что в аэробных условиях при окислении глюкозы до СО2 на каждый грамм глюкозы нужен 1 г кислорода. [c.55]

    Условия питательной среды характеризует окислительновосстановительный потенциал, выраженный в милливольтах или чаще отрицательным логарифмом давления молекулярного водорода гНз. Для анаэробных микроорганизмов наивысшее значение гНз равно 12, наименьшее — 0. Для аэробных микроорганизмов, например для видов Azotoba ter, гНа равно 29,6, для дрожжей—10—30. За время роста аэробных микроорганизмов редокс-потенциал уменьшается, так как потребляется кислород и в среде накапливаются восстановленные продукты. [c.56]

    Ряд культур дрожжей, в том числе Sa haromy es, в условиях недостаточного обеспечения среды кислородом и при наличии углеводов получают энергию путем анаэробного расщепления сахаров (гликолиз) при этом образуется этанол. Как только в среде появляется кислород, клетки дрожжей сразу переключаются на энергетически более выгодный аэробный метаболизм (Пастеровский эффект) и способны метаболизировать не только глюкозу, но и накопившийся в среде этанол. Усваивать этанол дрожжи могут благодаря наличию в их клетках фермента алько-гольдегидрогеназы (рис. 41). [c.106]

    Продуцентами этих кислот могут быть бактерии, плесневые грибы или дрожжи. Микроорганизмы, продуцирующие молочную кислоту, а также вызывающие спиртовое брожение, в ходе эволюции приспособились к анаэробному образу жизни. Уксусная и лимонная кислоты в свою очередь образуются в аэробных условиях. По-видимому, кислоты играют определенную роль в борьбе с конкурирующей микрофлорой, а также являются резервными источниками углерода. Так, Aspergillus niger после использования сахара могут использовать в качестве субстрата лимонную кислоту. В свою очередь уксуснокислые бактерии при отсутствии спирта в среде ассимилируют уксусную кислоту, окисляя ее до воды и СО2. [c.143]

    Бактериальная микрофлора (рис. 139) представлена.следующими микроорганизмами 1) уксуснокислые бактерии, превращающие этиловый спирт в уксусную кислоту 2) молочнокислые бактерии, относящиеся к бесспо овым палочкообразным видам оптимальная температура для их развития 24—50° они анаэробны, используют сахар, превращая его в молочную кислоту и ряд других веществ (уксусная кислота, этиловый спирт) в результате жизнедеятельности молочнокислых и уксуснокислых бактерий значительно повышается кислотность сусла и бражки 3) маслянокислые и другие спороносные бактерии, использующие сахар (встречаются реже), а также сардины. Сардины представляют собой клетки, состоящие из восьми шариков, очень аэробны, превращают сахар в молочную и уксусную кислоты. Их можно обнаружить в сусле и бражке, полученных в результате гидролиза сельскохозяйственных отходов. Особенно благоприятной средой для развития инфекции служат хлопковые гидролизаты, богатые азотистыми и минеральными веществами. Маслянокислые бактерии являются довольно опасными врагами брожения, так как образуемая ими масляная кислота действует угнетающим образом на дрожжи  [c.557]

    По условиям проведения процесса различают нестерильные (крзгпнотоннажное производство кормовых дрожжей) и стерильные производства (полз ение антибиотиков, витаминов, моноклональных антител идр), аэробные, или с подачей воздуха и анаэробные (без подачи воздуха) — соответственно производства лимонной кислоты и полисахарида декстрана [c.239]

    Жидкие отходы дрожжевых заводов, где производят дрожжи на мелассном сусле, содержат органические и минеральные вещества (мг/л в среднем) этанол — 0,45, углеводы (в том числе — сбраживаемые) — 1,0, общий азот — 0,8, азот неорганический — 0,13, зольные элементы — 5,4. ВПК таких отходов составляет около 20000 частей О2 на 1 млн., то есть примерно столько, сколько и ВПК для канализационных вод. Отходы, образующиеся от 1000 т мелассы, соответствуют бьггрвым стокам города с населением около 0,5 млн. жителей. Подобные жидкие отходы подвергают микробиологической обработке (анаэробной или аэробной). [c.356]

    Грибы — микроскопические нефотооинтезирующие растения, к которым относят дрожжи и плесень. Дрожжи используют для промышленной ферментации (брожения) в хлебопечении, перегонке и пивоварении. В анаэробных условиях дрожжи метаболизируют сахар, в результате чего образуется спирт с минимальным синтезом новых дрожжевых клеток. В аэробных условиях спирт не образуется, зато возникает много новых дрожжевых клеток. Поэтому для выращивания фуражных дрожжей на отходах сахара или патоки используется аэробная ферментация. [c.53]

    Существуют три основных способа сбраживания сахар-со-держащего сырья периодическии, периодический с повторным использованием клеток и непрерывный. При периодическом процессе субстрат сбраживается после внесения в него свежевыра-щенной закваски, полученной в аэробных условиях. Брожение протекает в анаэробных условиях, и весь оставшийся субстрат превращается при этом в спирт. После завершения брожения дрожжи удаляют, и для следующего цикла получения спирта выращивают новую порцию закваски. Размножение дрожжей является дорогостоящей процедурой, так как расходуется много субстрата. [c.69]

    Первые опыты с биологическими топливными элементами и батареями провел в 1910 г. английский ботаник Поттер. Погружая платиновый электрод в анаэробную культуру дрожжей или Es heri hia oli, он обнаружил, что на нем образуется потенциал, отрицательный по отношению к потенциалу такого же электрода, находящегося в аэробной стерильной среде. Наг пряжение в цепи было при этом 0,3—0,5 В, а сила слабого тока составляла 0,2 мА. За последующие 50 лет было описано множество биотопливных элементов, работающих на основе Других организмов и топлив. В конце 50-х и начале 60-х годов интерес к таким устройствам у исследователей, работавших по космическим программам, сильно возрос. [c.84]

    Этиловый спирт (этанол)-один из широко распространенных продуктов сбраживания сахаров микроорганизмами. Даже растения и многие грибы в анаэробных условиях накапливают этанол. Главные продуценты этанола-дрожжи, особенно штаммы Sa haromy es erevisiae. Дрожжи, как и большинство других грибов, осуществляют аэробное дыхание, но без доступа воздуха они сбраживают углеводы до этанола и СО2. У ряда анаэробных и факультативно-анаэробных бактерий этиловый спирт тоже является главным или побочным продуктом сбраживания гексоз или пентоз. [c.266]

    В третьем столбце табл. 8.1 приводятся результаты опыта, в котором дрожжи инкубировали в аэробных условиях в присутствии 0,4 мМ 2,4-динитрофенола (ДНФ). ДНФ разобщает фосфорилирование и окисление в дыхательной цепи он нарущает сопряжение между переносом электронов и фосфорилированием, после чего дыхание протекает уже без контроля со стороны фосфорилирования. Добавление ДНФ практически выключает фосфорилирование в дыхательной цепи, и водород, отщепляющийся в цикле трикарбоновых кислот, уже не может использоваться для энергетических целей. Доступным для использования ока-"зывается только высокоэнергетический фосфат, образующийся при расщеплении. сукцинил-СоА. Результаты опыта показывают, что в присутствии ДНФ потребление глюкозы возрастает до величины, наблюдаемой в анаэробных условиях, что связано с его разобщающим Действием. [c.269]

    Для грибов характерен окислительный тип метаболизма. Это не означает, что грибы не способны к анаэробному расщеплению углеводов, т.е. не цогут их сбраживать (ведь спиртовое брожение осуществляется как раз дрожжами ) однако в анаэробных условиях сколько-нибудь длительный рост грибов невозможен. Кроме того, основными продуктами брожения оказываются этанол или молочная кислота. Другие органические кислоты образуются только в аэробных условиях, [c.328]

    Оба конечных продукта (лактат или этанол + СО2) накапливаются в анаэробных условиях. Наиболее эффективным способом удаления этих двух органических соединений является их полное окисление до СО2 и Н2О. Для осуществления этого процесса необходимы аэробные условия, которые могут быть созданы либо тогда, когда одна и та же клетка способна взаидю-действовать с разным физиологическим окружением и функционировать в Нем (таковы, например, дрожжи и некоторые клетки млекопитающих), либо в том случае, когда, как у высших организмов, для разных физиологических условий существуют разные, специализированные клетки (например, когда лактат, образовавшийся в скелетных мышцах, уносится кровью и транснортируется в печень для окисления). [c.282]

    Получение жиров из углеводов под действием микроорганизмов. Этот процесс неосуществим при помощи аэробных грибков. Значительно более перспективно использование анаэробных грибков (например, Fusarium) или кормовых дрожжей (типа Torula или andida), культивируемых при недостатке азота. До сих пор биологический синтез жиров был нерентабелен. В последнее время в опытных условиях испробовано применение для этого водорослей. [c.396]

chem21.info

Анаэробы и аэробы

palochkiАнаэробы и аэробы – две формы существования организмов на земле. В статье речь идёт о микроорганизмах.

Анаэробы – микроорганизмы, которые развиваются и размножаются  в  среде, не содержащей свободный кислород.  Анаэробные микроорганизмы обнаруживаются практически во всех  тканях человека из гнойно-воспалительных очагов. Их относят к условно-патогенным (существуют у человека в номе и развиваются только у людей с ослабленной иммунной системой), но иногда они могут быть патогенными (болезнетворными).

Различают факультативные и облигатные анаэробы. Факультативные анаэробы могут развиваться и размножаться и в бескислородной  и в кислородной среде. Это такие микроорганизмы как  кишечная палочка, иерсинии, стафилококки, стрептококки, шигеллы и другие бактерии. Облигатные анаэробы могут существовать только в бескислородной среде и погибают при появлении свободного кислорода в окружающей среде. Облигатные анаэробы  подразделяют на две группы:

  • бактерии, образующие споры, иначе их называют клостридии
  • бактерии, не образующие споры, или иначе неклостридиальные анаэробы.

Клостридии — это возбудители анаэробных клостридиальных инфекций – ботулизма, клостридиальных раневых инфекций, столбняка. Неклостридиальные анаэробы это    нормальная  микрофлора человека и животных. К  ним относят бактерии палочковидной  и шаровидной формы: бактероиды, фузобактерии, пейллонеллы, пептококки, пептострептококки, пропионибактерии, эубактерии и другие.

Но неклостридиальные анаэробы могут существенно способствовать  развитию гнойно-воспалительных процессов (перитонит, абсцессы лёгких и головного мозга, пневмония, эмпиема плевры, флегмоны челюстно-лицевой области, сепсис, отит и другие). Большинство анаэробных инфекций, вызываемых неклостридиальными анаэробами, относятся к эндогенным (внутреннего происхождения, вызываемые внутренними причинами)  и развиваются главным образом при снижении  сопротивляемости организма, устойчивости к воздействию болезнетворных микроорганизмов в результате травм, операций, переохлаждения, снижения иммунитета.

Основную часть анаэробов, играющих роль в развитии инфекций составляют бактероиды, фузобактерии, пептострептококки и споровые палочки.  Половину гнойно-воспалительных  анаэробных инфекций вызывают бактероиды.

  • Бактероиды-палочки, размером 1-15 мкм, наподвижные или движущиеся с помощью жгутиков. Они выделяют токсины, действующие в качестве факторов вирулентности (болезнетворности).
  • Фузобактерии – палочковидные облигатные (выживающие только в отсутствие кислорода) анаэробные бактерии, обитают на слизистой оболочке рта и кишечника, могут быть неподвижными или подвижными, содержат сильный эндотоксин.
  • Пептострептококки – сферические бактерии, расположены по две, четыре, неправильныи скоплениями или цепочками.  Это безжгутиковые бактерии, спор не образуют. Пептококки – род сферических бактерий, представленных одним видом P.niger. Расположены поодиночке, парами или скоплениями. Жгутиков у пептококков нет, спор они не образуют.
  • Вейонеллы – род диплококков (бактерии кокковой формы, клетки которых располагаются парами), расположенных в виде короткими цепочами, неподвижны, спор не образуют.
  • Другие неклостридиальные анаэробные бактерии, которые выделяют из инфекционных очагов больных — пропионовые бактерии, волинеллы, роль которых менее изучена.

Клостридии – род спорообразующих анаэробных бактерий. Клостридии обитают на слизистых желудочно-кишечного тракта. Клостридии  в основном  патогенны (болезнетворны) для человека.  Они выделяют специфические для каждого вида высокоактивные токсины.  Возбудителем анаэробной инфекции может быть как один вид бактерий,  так и несколько видов микроорганизмов: анаэробно-анаэробной (бактероиды и фузобактерии), анаэробно-аэробной (бактероиды и стафилококки, клостридии и стафилококки)

Аэробы  — организмы, которым для жизнедеятельности и размножения необходим   свободный кислород.  В отличие от анаэробов у аэробов кислород участвует в процессе выработки необходимой им энергии. К аэробам относятся  животные, растения и  значительная часть микроорганизмов, среди которых выделяют.

  • облигатных аэробов – это «строгие» или «безусловные» аэробы, получают энергию только из окислительных реакций с участием кислорода; к ним относятся, например, некоторые виды псевдомонад, многие сапрофиты, грибы, Diplococcus pneumoniae,  дифтерийные палочки
  • в группе облигатных аэробов можно выделить микроаэрофилов – для жизнедеятельности им необходимо низкое содержание кислорода. При попадании в обычную внешнюю среду такие микроорганизмы подавляются или гибнут, поскольку кислород  отрицательно влияет на действие их ферментов. К ним относятся, например, менингококки, стрептококки, гонококки.
  • факультативные аэробы – микроорганизмы, которые могут развиваться и при отсутствии кислорода, например, дрожжевая палочка. К этой группе относится большинство патогенных микробов.

Для каждого аэробного микроорганизма существует свой минимум, оптимум и максимум концентрации  кислорода в окружающей его среде, необходимой для его нормального развития. Повышение содержания кислорода за границу «максимум» ведёт к гибели микробов. Все микроорганизмы гибнут при концентрации кислорода 40-50%.

Читайте «Клостридиальная и неклостридиальная анаэробная инфекция» «Нормальная микрофлора человека«

infection-net.ru

Дыхание бактерий, грибов, растений, классификация по типу: аэробное, анаэробное, брожение

Чтобы перерабатывать питательные вещества, поступающие в микроорганизмы, им необходимо много энергии. Она также необходима для размножения и роста. Чтобы получить ее, микроорганизмы дышат. Дыхание бактерий заключается в том, что органические вещества, имеющие более сложную формулу, окисляются до более простых. При этом процессе высвобождается биоэнергия.

Где живут бактерии

В микробиологии принято было считать дыхание биологическим окислением органических веществ кислородом. Но открытие анаэробов, которым для получения энергии он не нужен, перевернуло представления об этом понятии полностью.

Классификация по типу дыхания

Чтобы получить необходимую биоэнергию для жизни и питания из органических и неорганических веществ, одни бактерии используют для этого О2, для других он, наоборот, смертелен, а третьи прекрасно приспосабливаются к любым условиям и любому его содержанию. Учитывая такую сущность, их делят по способу на два типа: аэробные, для которых необходим кислород, и анаэробные ─ те, для которых он губителен.

У грибов, так же как у бактерий, два типа дыхания: аэробное и анаэробное. Яркий пример грибов-анаэробов ─ дрожжи. Процесс выработки энергии анаэробных грибов происходит в цитоплазме и носит название гликолиз.

Такие съедобные грибы, как лисички, белые, моховики, и многие другие дышат так же, как растения и другие аэробные формы жизни. Процесс выработки энергии у аэробных грибов и растений происходит в митохондриях.

способы дыхания бактерий

Растения являются аэробами, им, чтобы дышать, необходим О2, а продуктом его переработки является углекислый газ. Но в отличие от грибов у растений, как и у сине-зеленых водорослей, параллельно с дыханием происходит процесс фотосинтеза. Растения и сине-зеленые водоросли при этом выделяют О2 больше чем поглощают, когда дышат. При отсутствии солнечного света растения только дышат. И при нехватке кислорода растения гибнут, что не страшно факультативным формам.

Аэробные микроорганизмы

В процессе дыхания аэробные бактерии преобразуют окисление органики до воды и углекислого газа. При полном окислении выделяется вся энергия. Если происходит неполное окисление органики, то невыделившаяся часть будет оставаться в продуктах их питания. Автотрофы нужную им энергию получают за счет неорганических веществ, а гетеротрофы – из органических.

Учитывая потребность микроорганизмов в кислороде, ученые выделили такие классификации:

  • облигатные;
  • факультативные;
  • микроаэрофилы;
  • капнеические.

аэробное дыхание

Облигатные аэробы

Облигатные (строгие) способны существовать, только если в среде есть наличие свободного О2 не менее 21%. Ярким примером облигатных форм являются уксуснокислые микроорганизмы, которым для жизнедеятельности и питания необходимо большое количество О2. Также к строгим аэробам относят растения, животные, многие типы грибов. Даже небольшая нехватка свободного кислорода приводит к тому, что замедляется рост и развитие аэробов.

Факультативные аэробы

К условным (факультативным) относят тех аэробов, жизнедеятельность которых может протекать как с участием О2, так и без него. Часть аэробов хорошо развивается при его большом количестве, другим, наоборот, необходим малый процент. Это обусловлено тем, что одни аэробы вместе с ферментами переносят водород на свободные соединения, а некоторые переносят вместе с водородом и кислород. В зависимости от процента содержания О2 такие микроорганизмы способны менять метаболические процессы и изменять использование свободного кислорода на продукты брожения. Их умение приспосабливаться как в кислородосодержащей среде, так и в анаэробной привело к большому числу видов.

Бактерия под микроскопом

Микроаэрофилы

Это тип аэробов, сущность жизни которых зависит от низкого содержания (около 2%) кислорода. В отличие от других аэробов для дыхания у бактерий этого типа необходим О2 пониженной концентрации. Многие из них, например, Helicobacter pylori, вызывающий гастрит и язву желудка, а также Streptococcus pyogenes, известный как возбудитель фарингита, плохо переносят нормальную концентрацию О2. Эта их сущность применяется при лечении заболеваний с применением препаратов, имитирующих атмосферный О2.

Капнеические

В микробиологии вид микроорганизмов, которым для дыхания нужен не только О2, но и СО2, носит название капнеические.

Анаэробы

анаэробные бактерии

Для дыхания этих микроорганизмов О2 не нужен. Это называется брожением. Нужную энергию они получают путем расщепления сложных молекул органики на простые. Процесс брожения происходит в результате распада глюкозы без наличия воздуха, к примеру, спиртовое брожение, где глюкоза преобразуется в спирт и выделяется углекислый газ. В результате такого брожения выделяется биоэнергия, температура субстрата повышается на несколько градусов. Жизнедеятельность такого вида хорошо видна при брожении и нагревании зерна, сена, силоса.

Основными особенностями анаэробов являются:

  • Образование метана. Этот биопроцесс происходит в результате деятельности метановых бактерий путем разложения органических соединений.
  • Образование сероводорода. Это является продуктом работы сероводородных бактерий.
  • Винное брожение.

Анаэробы делятся на два вида: факультативные и облигатные. Факультативные виды могут дышать и в кислородосодержащей среде, и там, где кислород отсутствует. Самые яркие представители облигатных микроорганизмов – стрептококки, кишечная палочка, стафилококки, иерсинии, шигеллы.

Облигатные формы погибают там, где есть свободный О2. Анаэробные облигатные виды представлены двумя типами: спорообразующими (клостридиями) и неспорообразующими.

Спорообразующие часто являются возбудителями многих инфекционных заболеваний: ботулизма, гнойных инфекций, столбняка.

Неспорообразующие являются жителями организмов человека и животных. Часто они являются возбудителями таких инфекционных заболеваний, как пневмония, перитонит, отит, абсцесс головного мозга и легких, сепсис и другие. Их развитие происходит в основном при переохлаждении, снижении общей сопротивляемости организма, травмах.

Бактерии в организме человека

В жизнедеятельности микробов, грибов и растений есть много схожих химических процессов, но только бактерии способны существовать в любой среде, при любых температурах, что привело к их расселению на планете в таких масштабах.

probakterii.ru

Анаэробные бактерии и организмы: что это такое

Организмы, которые способны получать энергию в условиях отсутствия кислорода, называются анаэробами. Причём к группе анаэробов относятся как микроорганизмы (простейшие и группа прокариотов), так и макроорганизмы, к которым можно отнести некоторые водоросли, грибы, животных и растения. В нашей статье мы подробно рассмотрим анаэробные бактерии, которые используются для очистки сточных вод в локальных очистных сооружениях. Поскольку наряду с ними в очистных сооружениях могут применяться аэробные микроорганизмы, мы проведём сравнение этих бактерий.

Классификация

Организмы, которые способны получать энергию в условиях отсутствия кислорода, называются анаэробами

Что такое анаэробы, мы разобрались. Теперь стоит понять, на какие виды они делятся. В микробиологии используется следующая таблица классификации анаэробов:

  • Факультативные микроорганизмы. Факультативно-анаэробными называют бактерии, которые могут менять свой метаболический путь, то есть способны менять дыхание с анаэробного на аэробное и наоборот. Можно утверждать, что они живут факультативно.
  • Капнеистические представители группы способны жить только в среде с пониженным содержанием кислорода и повышенным содержанием углекислого газа.
  • Умеренно-строгие организмы могут выживать в среде с содержанием молекулярного кислорода. Однако тут они не способны размножаться. Макроаэрофилы могут и выживать, и размножаться в среде с пониженным парциальным давлением кислорода.
  • Аэротолерантные микроорганизмы отличаются тем, что они не могут жить факультативно, то есть не в состоянии переключаться с анаэробного дыхания на аэробное. Однако от группы факультативно-анаэробных микроорганизмов они отличаются тем, что не гибнут в среде с молекулярным кислородом. В эту группу входит большинство маслянокислых бактерий и некоторые виды молочнокислых микроорганизмов.
  • Облигатные бактерии быстро гибнут в среде с содержанием молекулярного кислорода. Они способны жить только в условиях полной изоляции от него. В эту группу входят инфузории, жгутиковые, некоторые виды бактерий и дрожжи.

Влияние кислорода на бактерии

Любая среда, содержащая кислород, агрессивно воздействует на органические формы жизни

Любая среда, содержащая кислород, агрессивно воздействует на органические формы жизни. Всё дело в том, что в процессе жизнедеятельности различных форм жизни или из-за влияния некоторых видов ионизирующего излучения образуются активные формы кислорода, которые отличаются большей токсичностью в сравнении с молекулярным веществом.

Главным определяющим фактором для выживания живого организма в условиях кислородной среды является наличие у него антиоксидантной функциональной системы, которая способна к элиминации. Обычно такие защитные функции обеспечиваются одним или сразу несколькими ферментами:

  • цитохром;
  • каталаза;
  • супероксиддисмутаза.

При этом некоторые анаэробные бактерии факультативного вида содержат только один вид фермента – цитохром. Аэробные микроорганизмы имеют целых три цитохрома, поэтому прекрасно себя чувствуют в условиях кислородной среды. А облигатные анаэробы вообще не содержат цитохром.

Рекомендуем к прочтению:

Однако некоторые анаэробные организмы могут воздействовать на окружающую их среду и создавать подходящий ей окислительно-восстановительный потенциал. Например, определённые микроорганизмы перед началом размножения снижают кислотность среды с показателя 25 до 1 или 5. Это позволяет им оградить себя особым барьером. А аэротолерантные анаэробные организмы, которые в процесс своей жизнедеятельности выделяют перекись водорода, могут повышать кислотность среды.

Важно: для обеспечения дополнительной антиоксидантной защиты, бактерии синтезируют или накапливают низкомолекулярные антиоксиданты, к которым относятся витамины группы А, Е и С, а также лимонная и другие виды кислот.

Как анаэробы получают энергию?

Анаэробные организмы могут получить энергию разными путями

Анаэробные организмы могут получить энергию разными путями:

  1. Некоторые микроорганизмы получают энергию в процессе катаболизма различных соединений аминокислот, например, белков и пептидов, а также самих аминокислот. Как правило, такой процесс высвобождения энергии называется гниением. А саму среду, в энергообмене которой наблюдается много процессов катаболизма соединений аминокислот и самих аминокислот, называют гнилостной средой.
  2. Другие анаэробные бактерии способны расщеплять гексозы (глюкозу). При этом могут использоваться разные пути расщепления:
    • гликолиз. После него в среде происходят бродильные процессы;
    • окислительный путь;
    • реакции Энтнера-Дудорова, которые проходят в условиях маннановой, гексуроновой или глюконовой кислоты.

При этом только анаэробные представители могут использовать гликолиз. Он может делиться на несколько разновидностей брожения в зависимости от продуктов, которые образуются после реакции:

  • спиртовое брожение;
  • молочнокислое брожение;
  • вид энтеробактерий муравьиной кислоты;
  • маслянокислое брожение;
  • пропионовокислая реакция;
  • процессы с выделением молекулярного кислорода;
  • метановое брожение (используется в септиках).

Особенности анаэробов для септика

В анаэробных септиках используются микроорганизмы, которые способны производить переработку стоков без доступа кислорода

В анаэробных септиках используются микроорганизмы, которые способны производить переработку стоков без доступа кислорода. Как правило, в отсеке, где находятся анаэробы, значительно ускоряются процессы гниения сточных вод. В результате этого процесса твёрдые соединения выпадают на дно в виде осадка. При этом жидкая составляющая стоков качественно очищается от различных органических включений.

Во время жизнедеятельности этих бактерий образуется большое количество твёрдых соединений. Все они оседают на дне локального очистного сооружения, поэтому оно нуждается в регулярной очистке. Если очистку производить не своевременно, то эффективная и слаженная работа очистной установки может быть полностью нарушена и выведена из строя.

Рекомендуем к прочтению:

Внимание: осадок, добытый после очистки септика, не стоит использовать в качестве удобрения, поскольку в нём содержатся вредные микроорганизмы, способные нанести вред окружающей среде.

Поскольку анаэробные представители бактерий в процесс своей жизнедеятельности вырабатывают метан, очистные сооружения, которые работают с использованием этих организмов, должны укомплектовываться эффективной системой вентиляции. В противном случае неприятный запах способен испортить окружающий воздух.

Важно: эффективность очистки стоков с использованием анаэробов составляет только 60-70 %.

Недостатки использования анаэробов в септиках

Очистное сооружение, функционирующее с использованием этих бактерий, может издавать очень неприятный запах

Анаэробные представители бактерий, входящие в состав различных биопрепаратов для септиков, имеют следующие недостатки:

  1. Отходы, которые образуются после переработки бактериями сточных вод, не подходят для удобрения почвы из-за содержания в них вредных микроорганизмов.
  2. Поскольку в ходе жизнедеятельности анаэробов образуется большое количество плотного осадка, его удаление необходимо проводить регулярно. Для этого вам придётся вызывать ассенизаторов.
  3. Очистка стоков с использованием анаэробных бактерий происходит не полностью, а только максимум на 70 процентов.
  4. Очистное сооружение, функционирующее с использованием этих бактерий, может издавать очень неприятный запах, который обусловлен тем, что данные микроорганизмы выделяют метан в процессе жизнедеятельности.

Отличие анаэробов от аэробов

Главное отличие между аэробами и анаэробами состоит в том, что первые способны жить и размножаться в условиях с высоким содержанием кислорода

Главное отличие между аэробами и анаэробами состоит в том, что первые способны жить и размножаться в условиях с высоким содержанием кислорода. Поэтому такие септики обязательно укомплектовываются компрессором и аэратором для закачивания воздуха. Как правило, эти локальные очистные сооружения не издают такого неприятного запах.

В отличие от них анаэробные представители (как показывает таблица микробиологии, описанная выше) не нуждаются в кислороде. Более того некоторые их виды способны погибнуть при высоком содержании этого вещества. Поэтому такие септики не требуют закачивания воздуха. Для них важно лишь удаление образовавшегося метана.

Ещё одно отличие состоит в количестве образующегося осадка. В системах с аэробами количество осадка намного меньше, поэтому очистку сооружения можно проводить намного реже. Кроме этого, очистку септика можно выполнять без вызова ассенизаторов. Для удаления густого осадка из первой камеры можно взять обычный сачок, а чтобы откачать активный ил, образующийся в последней камере, достаточно использовать дренажный насос. Более того активный ил из очистного сооружения с использованием аэробов можно использовать для удобрения почвы.

vodakanazer.ru

Аэробные и анаэробные бактерии – кратко простым языком

Сравнение аэробных и анаэробных бактерий

Все живые организмы делятся на аэробов и анаэробов, включая бактерий. Поэтому существует два типа бактерий в организме человека и вообще в природе – аэробные и анаэробные. Аэробы должны получать кислород, чтобы жить, тогда как анаэробным бактериям он не нужен вообще или не обязателен. И те, и другие типы бактерий играют важную роль в экосистеме, принимая участие в разложении органических отходов. Но среди анаэробов много видов, которые способны вызывать проблемы со здоровьем у человека и животных.

Люди и животные, а также большинство грибов и т.д. – все обязательные аэробы, которым нужно дышать и вдыхать кислород, чтобы выжить.

Анаэробные бактерии в свою очередь делятся на:

  • факультативные (условные) – нуждаются в кислороде для более эффективного развития, но могут обходится без него;
  • облигатные (обязательные) – кислород для них смертелен и убивает через некоторое время (оно зависит от вида).

Анаэробные бактерии способны жить в местах, где мало кислорода, таких как человеческая ротовая полость, кишечник. Многие из них вызывают заболевания в тех областях человеческого организма, где меньше кислорода, – горле, во рту, кишечнике, среднем ухе, ранах (гангрены и абсцессы), внутри прыщей и т.д. Помимо этого есть и полезные виды, помогающие пищеварению.

Аэробные бактерии, по сравнению с анаэробными, используют O2 для клеточного дыхания. Анаэробное же дыхание означает энергетический цикл с меньшей эффективностью для производства энергии. Аэробное дыхание – это энергия, выделяемая сложным процессом, когда O2 и глюкоза метаболизируются вместе внутри митохондрий клетки.

При сильных физических нагрузках организм человека может испытывать кислородное голодание. Это вызывает переключение на анаэробный метаболизм в скелетных мышцах, в процессе которого вырабатываются кристаллы молочной кислоты в мышцах, так как углеводы расщепляются не полностью. После этого мышцы позже начинают болеть (крепатура) и лечатся путем массирования области для ускорения растворения кристаллов и естественным вымыванием их кровотоком со временем.

Анаэробные и аэробные бактерии развиваются и размножаются при ферментации – в процессе разложения органических веществ при помощи ферментов. При этом аэробные бактерии используют кислород, присутствующий в воздухе для энергетического метаболизма, по сравнению с анаэробными бактериями, которые не нуждаются в кислороде из воздуха для этого.

Это можно понять, проведя эксперимент, чтобы идентифицировать тип, выращивая аэробные и анаэробные бактерии в жидкой культуре. Аэробные бактерии соберутся сверху, чтобы вдохнуть больше кислорода и выжить, тогда как анаэробные – скорее соберутся на дне, чтобы избежать кислорода.

Почти все животные и люди являются обязательными аэробами, для которых требуется кислород для дыхания, тогда как стафилококки во рту являются примером факультативных анаэробов. Отдельные человеческие клетки также являются факультативными анаэробами: они переключаются на ферментацию молочной кислоты, если кислород недоступен.

Краткое сравнение аэробных и анаэробных бактерий

  1. Аэробные бактерии используют кислород, чтобы оставаться в живых.Анаэробные бактерии нуждаются в минимальном количестве кислорода или вообще умирают в его присутствии (зависит от видов) и, следовательно, избегают O2.
  2. Многие виды среди тех и других видов бактерий играют важную роль в экосистеме, принимая участия в разложении органических веществ – являются редуцентами. Но грибы в этом плане более важны.
  3. Анаэробные бактерии являются причиной различных заболеваний различных заболеваний, от боли в горле до ботулизма, столбняка и других.
  4. Но среди анаэробных бактерий также присутствуют и те, что приносят пользу, например, расщепляют вредные для человека растительные сахара в кишечнике.
Загрузка...

zdorovko.info

Анаэробные организмы — WiKi

Аэробные и анаэробные бактерии предварительно идентифицируются в жидкой питательной среде по градиенту концентрации O2: 1. Облигатные аэробные бактерии в основном собираются в верхней части пробирки, чтобы поглощать максимальное количество кислорода. (Исключение: микобактерии — рост пленкой на поверхности из-за восколипидной мембраны.) 2. Облигатные анаэробные бактерии собираются в нижней части, чтобы избежать кислорода (либо не дают роста). 3. Факультативные бактерии собираются в основном в верхнем (окислительное фосфорилирование является более выгодным, чем гликолиз), однако они могут быть найдены на всем протяжении среды, так как от O2 не зависят. 4. Микроаэрофилы собираются в верхней части пробирки, но их оптимум — малая концентрация кислорода. 5. Аэротолерантные анаэробы не реагируют на концентрации кислорода и равномерно распределяются по пробирке

Анаэробы — организмы, получающие энергию при отсутствии доступа кислорода путём субстратного фосфорилирования, конечные продукты неполного окисления субстрата при этом могут быть окислены с получением большего количества энергии в виде АТФ в присутствии конечного акцептора протонов организмами, осуществляющими окислительное фосфорилирование.

Анаэробы — обширная группа организмов, как микро-, так и макроуровня:

Помимо этого анаэробное окисление глюкозы играет важную роль в работе поперечно-полосатой мускулатуры животных и человека (особенно в состоянии тканевой гипоксии).

Термин «анаэробы» ввел Луи Пастер, открывший в 1861 году бактерии маслянокислого брожения. Анаэробное дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов при использовании в качестве конечного акцептора электронов не кислорода, а других веществ (например, нитратов) и относится к процессам энергетического обмена (катаболизм, диссимиляция), которые характеризуются окислением углеводов, липидов и аминокислот до низкомолекулярных соединений.

Степень аэробности среды

  Интерполяция руководства к системам BD Gaspak, описывающая условия среды генерируемые пакетом[1]

Для измерения потенциала среды М. Кларк предложил использовать величину ph30 — отрицательный логарифм парциального давления газообразного водорода. Диапазон [0-42,6] характеризует все степени насыщения водного раствора водородом и кислородом. Аэробы растут при более высоком потенциале [14-20], факультативные анаэробы [0-20], а облигатные — при наиболее низком [0-10].[2]

Классификация анаэробов

Согласно устоявшейся в микробиологии классификации, различают:

  • Факультативные анаэробы
  • Капнеистические анаэробы и микроаэрофилы
  • Аэротолерантные анаэробы
  • Умеренно-строгие анаэробы
  • Облигатные анаэробы

Если организм способен переключаться с одного метаболического пути на другой (например, с анаэробного дыхания на аэробное и обратно), то его условно относят к факультативным анаэробам[3].

До 1991 года в микробиологии выделяли класс капнеистических анаэробов, требовавших пониженной концентрации кислорода и повышенной концентрации углекислоты (Бруцеллы бычьего типа — B. abortus)[2]

Умеренно-строгий анаэробный организм выживает в среде с молекулярным O2, однако не размножается. Микроаэрофилы способны выживать и размножаться в среде с низким парциальным давлением O2.

Если организм не способен «переключиться» с анаэробного типа дыхания на аэробный, но не гибнет в присутствии молекулярного кислорода, то он относится к группе аэротолерантных анаэробов. Например, молочнокислые и многие маслянокислые бактерии

Облигатные анаэробы в присутствии молекулярного кислорода O2 гибнут — например, представители рода бактерий и архей: Bacteroides, Fusobacterium, Butyrivibrio, Methanobacterium). Такие анаэробы постоянно живут в лишенной кислорода среде. К облигатным анаэробам относятся некоторые бактерии, дрожжи, жгутиковые и инфузории.

Токсичность кислорода и его форм для анаэробных организмов

Среда с содержанием кислорода является агрессивной по отношению к органическим формам жизни. Это связано с образованием активных форм кислорода в процессе жизнедеятельности или под действием различных форм ионизирующего излучения, значительно более токсичных, чем молекулярный кислород O2. Фактор, определяющий жизнеспособность организма в среде кислорода[4] — наличие у него функциональной антиоксидантной системы, способной к элиминации:супероксид-аниона(O2−),перекиси водорода(h3O2), синглетного кислорода(O.), а также молекулярного кислорода (O2) из внутренней среды организма. Наиболее часто подобная защита обеспечивается одним или несколькими ферментами:

Аэробные организмы содержат чаще всего три цитохрома, факультативные анаэробы — один или два, облигатные анаэробы не содержат цитохромов.

Анаэробные микроорганизмы могут активно воздействовать на среду[2] , создавая подходящий окислительно-восстановительный потенциал среды (например, Clostridium perfringens). Некоторые засеянные культуры анаэробных микроорганизмов, прежде чем начать размножаться, снижают ph30 с величины [20-25] до [1-5], ограждая себя восстановительным барьером, другие — аэротолерантные — в процессе жизнедеятельности продуцируют перекись водорода, повышая ph30[5].

Дополнительная антиоксидантная защита может обеспечиваться синтезом или накоплением низкомолекулярных антиоксидантов: витамина С, А, E, лимонной и других кислот.

Получение энергии путём субстратного фосфорилирования. Брожение. Гниение

  Схема гликолиза с образованием молочной кислоты
  • Также анаэробные организмы могут получать энергию путём катаболизма аминокислот и их соединений (пептидов, белков). Такие процессы именуют гниением, а микрофлору в энергетическом обмене которой преобладают процессы катаболизма аминокислот называют гнилостной.
  • Анаэробные микроорганизмы расщепляют гексозы (например, глюкозу) разными путями:
    • Гликолиз (Путь Эмдена-Мейергофа) после которого продукт подвергается брожению
    • окислительный пентозофосфатный путь (другие названия: Фосфогликонатный путь, иначе гексозомонофосфатный(ГКМ), иначе путь Варбурга — Диккенса — Хореккера)
    • Путь Энтнера — Дудорова (особенно значимый, когда субстратами служат глюконовая, маннановая, гексуроновые кислоты или их производные)

В качестве примера организма, сбраживающего сахара по пути Энтнера — Дудорова, можно привести облигатно анаэробную бактерию Zymomonas mobilis. Однако её изучение позволяет предполагать, что Z. mobilis — вторичный анаэроб, произошедший от цитохромсодержащих аэробов. Путь Энтнера — Дудорова обнаружен и у некоторых клостридиев, что ещё раз подчеркивает неоднородность эубактерий, объединенных в эту таксономическую группу.[6].

При этом характерным только для анаэробов является гликолиз, который в зависимости от конечных продуктов реакции разделяют на несколько типов брожения:

В результате расщепления глюкозы расходуется 2 молекулы, а синтезируется 4 молекулы АТФ. Таким образом общий выход АТФ составляет 2 молекулы АТФ и 2 молекулы НАД·Н2. Полученный в ходе реакции пируват утилизируется клеткой по-разному в зависимости от того, какому типу брожения она следует.

Антагонизм брожения и гниения

В процессе эволюции сформировался и закрепился биологический антагонизм бродильной и гнилостной микрофлоры:

Расщепление микроорганизмами углеводов сопровождается значительным снижением pH среды, в то время как расщепление белков и аминокислот — повышением (защелачиванием). Приспособление каждого из организмов к определенной реакции среды играет важнейшую роль в природе и жизни человека, например, благодаря бродильным процессам предотвращается загнивание силоса, заквашенных овощей, молочных продуктов.

Культивирование анаэробных организмов

  Выделение чистой культуры анаэробов схематично

Культивирование анаэробных организмов в основном является задачей микробиологии.

Сложнее дело обстоит с культивированием анаэробных многоклеточных организмов, поскольку для их культивирования часто необходима специфическая микрофлора, а также определённые концентрации метаболитов. Применяется, например, при исследовании паразитов человеческого организма.

Для культивирования анаэробов применяют особые методы, сущность которых заключается в удалении воздуха или замены его специализированной газовой смесью (или инертными газами) в герметизированных термостатах — анаэростатах[7].

Другим способом выращивания анаэробов(чаще всего микроорганизмов) на питательных средах — добавление редуцирующих веществ (глюкозу, муравьинокислый натрий, казеин, сульфат натрия, тиосульфат, цистеин, тиогликолят натрия и др.), связывающих токсичные для анаэробов перикисные соединения.

Общие питательные среды для анаэробных организмов

Для общей среды Вильсона-Блера базой является агар-агар с добавлением глюкозы, сульфита натрия и двуххлористого железа. Клостридии образуют на этой среде колонии чёрного цвета за счет восстановления сульфита до сульфид — аниона, который соединяясь с катионами железа (II) дает соль чёрного цвета. Как правило, черные на этой среде образования колонии, появляются в глубине агарового столбика.[8]

Среда Китта-Тароцци состоит из мясопептонного бульона, 0,5 % глюкозы и кусочков печени или мясного фарша для поглощения кислорода из среды. Перед посевом среду прогревают на кипящей водяной бане в течение 20 — 30 минут для удаления воздуха из среды. После посева питательную среду сразу заливают слоем парафина или вазелинового масла для изоляции от доступа кислорода.

Общие методы культивирования для анаэробных организмов

GasPak — система химическим путём обеспечивает постоянство газовой смеси, приемлемой для роста большинства анаэробных микроорганизмов. В герметичном контейнере, в результате реакции воды с таблетками боргидрида натрия и бикарбоната натрия образуется водород и диоксид углерода. Водород затем реагирует с кислородом газовой смеси на палладиевом катализаторе с образованием воды, уже вторично вступающей в реакцию гидролиза боргидрида.

Данный метод был предложен Брюером и Олгаером в 1965 году. Разработчики представили одноразовый пакет, генерирующий водород, который был позднее усовершенствован ими до саше, генерирующих двуокись углерода и содержащих внутренний катализатор[9][10].

Метод Цейсслера применяется для выделения чистых культур спорообразующих анаэробов. Для этого производят посев на среду Китт-Тароцци, прогревают 20 мин при 80 °C (для уничтожения вегетативной формы), заливают среду вазелиновым маслом и инкубируют 24 ч в термостате. Затем производят посев на сахарно-кровяной агар для получения чистых культур. После 24-часового культивирования интересующие колонии изучаются — их пересеивают на среду Китт-Тароцци (с последующим контролем чистоты выделенной культуры).

  Метод Фортнера

Метод Фортнера — посевы производят на чашку Петри с утолщенным слоем среды, разделённым пополам узкой канавкой, вырезанной в агаре. Одну половину засевают культуру аэробных бактерий, на другую — анаэробных. Края чашки заливают парафином и инкубируют в термостате. Первоначально наблюдают рост аэробной микрофлоры, а затем (после поглощения кислорода) — рост аэробной резко прекращается и начинается рост анаэробной.

Метод Вейнберга используется для получения чистых культур облигатных анаэробов. Культуры, выращенные на среде Китта-Тароцци, переносят в сахарный бульон. Затем одноразовой пастеровской пипеткой материал переносят в узкие пробирки (трубки Виньяля) с сахарным мясо-пептонным агаром, погружая пипетку до дна пробирки. Засеянные пробирки быстро охлаждают, что позволяет фиксировать бактериальный материал в толще затвердевшего агара. Пробирки инкубируют в термостате, а затем изучают выросшие колонии. При обнаружении интересующей колонии на её месте делают распил, материал быстро отбирают и засеивают на среду Китта-Тароцци (с последующим контролем чистоты выделенной культуры).

  Метод Перетца

Метод Перетца — в расплавленный и охлаждённый сахарный агар-агар вносят культуру бактерий и заливают под стекло, помещённое на пробковых палочках(или фрагментах спичек) в чашку Петри. Метод наименее надежен из всех, но достаточно прост в применении.

Дифференциально — диагностические питательные среды

  • Среды Гисса («пестрый ряд»)
  • Среда Ресселя (Рассела)
  • Среда Эндо
  • Среда Плоскирева или бактоагар «Ж»
  • Висмут-сульфитный агар

Среды Гисса: К 1 % пептонной воде добавляют 0,5 % раствор определенного углевода (глюкоза, лактоза, мальтоза, маннит, сахароза и др.) и кислотно-щелочной индикатор Андреде, разливают по пробиркам, в которые помещают поплавок для улавливания газообразных продуктов, образующихся при разложении углеводородов.

Среда Ресселя (Рассела) применяется для изучения биохимических свойств энтеробактерий(шигелл, сальмонелл). Содержит питательный агар-агар, лактозу, глюкозу и индикатор (бромтимоловый синий). Цвет среды травянисто-зелёный. Обычно готовят в пробирках по 5 мл со скошенной поверхностью. Посев осуществляют уколом в глубину столбика и штрихом по скошенной поверхности.

Среда Эндо

Среда Плоскирева (бактоагар Ж) — дифференциально-диагностическая и селективная среда, поскольку подавляет рост многих микроорганизмов, и способствует росту патогенных бактерий (возбудителей брюшного тифа, паратифов, дизентерии). Лактозоотрицательные бактерии образуют на этой среде бесцветные колонии, а лактозоположительные — красные. В составе среды — агар, лактоза, бриллиантовый зелёный, соли желчных кислот, минеральные соли, индикатор (нейтральный красный).

Висмут-сульфитный агар предназначен для выделения сальмонелл в чистом виде из инфицированного материала. Содержит триптический гидролизат, глюкозу, факторы роста сальмонелл, бриллиантовый зелёный и агар. Дифференциальные свойства среды основаны на способности сальмонелл продуцировать сероводород, на их устойчивости к присутствию сульфида, бриллиантового зелёного и лимоннокислого висмута. Маркируются колонии в чёрный цвет сернистого висмута (методика схожа со средой Вильсона-Блера).

Метаболизм анаэробных организмов

Метаболизм анаэробных организмов имеет несколько различных подгрупп:

Анаэробный энергетический обмен в тканях человека и животных

Основной источник: [12]   Анаэробное и аэробное энергообразование в тканях человека

Некоторые ткани животных и человека отличаются повышенной устойчивостью к гипоксии (особенно мышечная ткань). В обычных условиях синтез АТФ идет аэробным путём, а при напряженной мышечной деятельности, когда доставка кислорода к мышцам затруднена, в состоянии гипоксии, а также при воспалительных реакциях в тканях доминируют анаэробные механизмы регенерации АТФ. В скелетных мышцах выявлены 3 вида анаэробных и только один аэробный путь регенерации АТФ.

  3 вида анаэробного пути синтеза АТФ

К анаэробным относятся:

  • Креатинфосфатазный (фосфогеный или алактатный) механизм — перефосфорилирование между креатинфосфатом и АДФ
  • Миокиназный — синтез (иначе ресинтез) АТФ при реакции трансфосфорилирования 2 молекул АДФ (аденилатциклаза)
  • Гликолитический — анаэробное расщепление глюкозы крови или запаса гликогена, заканчивающийся образованием молочной кислоты (иначе именуется «лактатным»).

Необходимо отметить, что прямым следствием гликолиза является критическое снижение рН тканей — ацидоз. Это ведет к снижению эффективного транспорта кислорода гемоглобином, и формирует положительную обратную связь.

Каждый механизм имеет своё время удержания максимальной мощности и оптимум энергообеспечения тканей. Наибольшая мощность и наименьшее время удержания:

См. также

Примечания

  1. ↑ Газогенерирующие контейнерные системы GasPak: Инструкция МК. — OOO "МК, официальный дистрибьютер Becton Dickinson International", 2010. — С. 7.
  2. ↑ 1 2 3 К. Д. Пяткин. Микробиология с вирусологией и иммунологией. — М:"Медицина", 1971. — С. 56.
  3. ↑ Л. Б. Борисов. Медицинская микробиология, вирусология и иммунология. — МИА, 2005. — С. 154-156. — ISBN 5-89481-278-X.
  4. ↑ Д. Г. Кнорре. Биологическая химия:Учеб. для хим., биол. и мед.спец.вузов. — 3. — М.:Высшая школа, 2000. — С. 134. — ISBN 5-06-003720-7.
  5. ↑ D. A. Eschenbach, P. R. Davick, B. L. Williams. Prevalence of hydrogen peroxide-producing Lactobacillus species in normal women and women with bacterial vaginosis. — J Clin Microbiol. 1989 February; 27(2): 251–256.
  6. ↑ М. В. Гусев, Л. А. Минеева. Микробиология. — М:МГУ, 1992. — С. 56.
  7. ↑ А. А. Воробьев. Атлас по медицинской микробиологии, вирусологии и иммунологии. — МИА, 2003. — С. 44. — ISBN 5-89481-136-8.
  8. ↑ Л. Б. Борисов. Руководство к лабораторным занятиям по медицинской микробиологии, вирусологии и иммунологии. — Медицина, 1992. — С. 31-44. — ISBN 5-2225-00897-6.
  9. ↑ J. H. Brewer, D. L. Allgeier. Disposable hydrogen generator. — Science 147:1033-1034. — 1966.
  10. ↑ J. H. Brewer, D. L. Allgeier. Safe self-contained carbon dioxide-hydrogen anaerobic system. — Appl. Microbiol.16:848-850. — 1966.
  11. ↑ G. F. Smirnova. Metabolism peculiarities of bacteria restoring chlorates and perchlorates. — Microbiol Z. 2010 Jul-Aug;72(4):22-8.
  12. ↑ Филиппович Ю. Б., Коничев А. С., Севастьянова Г. А. Биохимические основы жизнедеятельности организма человека. — Владос, 2005. — С. 302. — ISBN 5-691-00505-7.

Ссылки

ru-wiki.org


 
 
Пример видео 3
Пример видео 2
Пример видео 6
Пример видео 1
Пример видео 5
Пример видео 4
Как нас найти

Администрация муниципального образования «Городское поселение – г.Осташков»

Адрес: 172735 Тверская обл., г.Осташков, пер.Советский, д.З
+7 (48235) 56-817
Электронная почта: [email protected]
Закрыть
Сообщение об ошибке
Отправьте нам сообщение. Мы исправим ошибку в кратчайшие сроки.
Расположение ошибки: .

Текст ошибки:
Комментарий или отзыв о сайте:
Отправить captcha
Введите код: *